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THE ARNOLDI EIGENVALUE ITERATION
WITH EXACT SHIFTS CAN FAIL∗

MARK EMBREE†

Abstract. The restarted Arnoldi algorithm, implemented in the ARPACK software library and
MATLAB’s eigs command, is among the most common means of computing select eigenvalues and
eigenvectors of a large, sparse matrix. To assist convergence, a starting vector is repeatedly refined
via the application of automatically constructed polynomial filters whose roots are known as “exact
shifts.” Though Sorensen proved the success of this procedure under mild hypotheses for Hermitian
matrices, a convergence proof for the non-Hermitian case has remained elusive. The present note
describes a class of examples for which the algorithm fails in the strongest possible sense; that is, the
polynomial filter used to restart the iteration deflates the eigenspace one is attempting to compute.
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1. Setting. Large-scale matrix eigenvalue problems typically derive from appli-
cations in which one seeks only some small subset of the spectrum, such as the largest
magnitude or rightmost eigenvalues for stability analysis of dynamical systems. Given
a matrix A ∈ Cn×n, one can approximate such eigenvalues by projecting A onto an
appropriate low-dimensional subspace and then solving a small eigenvalue problem
with a dense method such as the QR algorithm. The Arnoldi method [1, 13] orthog-
onally projects A onto the Krylov subspace

Kk(A,v) := span{v,Av, . . . ,Ak−1v}
generated by the starting vector v ∈ Cn. This subspace—the span of iterates of the
power method—often produces eigenvalue estimates that fall on the “periphery” of the
spectrum [16], though the quality of such approximations depends on the distribution
of the eigenvalues of A, the angles between associated eigenvectors, and the starting
vector v. Provided that dim Kk+1(A,v) = k + 1, by the end of the kth iteration the
Arnoldi algorithm has produced orthonormal vectors v1, . . . ,vk+1 such that

span{v1, . . . ,vj} = Kj(A,v)

for all j = 1, . . . , k + 1. Accumulating v1, . . . ,vk into the columns of Vk ∈ Cn×k,
the algebra affecting the construction of the basis can be summarized in the Arnoldi
factorization

AVk = VkHk + hk+1,kvk+1e
∗
k,(1)

where ek denotes the last column of the k × k identity matrix and Hk = V∗
kAVk is

an upper Hessenberg matrix. The eigenvalues of Hk, the Ritz values, approximate
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2 MARK EMBREE

eigenvalues of A in the sense that if Hku = θu, then

‖A(Vku)− θ(Vku)‖ ≤ |hk+1,k||e∗ku|.
These Ritz values must fall within the numerical range (or field of values) of A,

W (A) := {z ∈ C : z = x∗Ax for some x ∈ Cn with ‖x‖ = 1},(2)

since θ = (Vku)∗A(Vku). The numerical range of a normal matrix is the convex hull
of its spectrum [5]; for nonnormal matrices, the numerical range may contain points
far from any eigenvalue (see, e.g., [17, Ch. 17]), a fact critical to the examples we
shall present. Given the Arnoldi algorithm’s broad utility, its nontrivial convergence
behavior has attracted considerable attention [3, 4, 6, 7, 8, 13].

The computational cost of enlarging the Krylov subspace in the Arnoldi algorithm
grows with the subspace dimension, k, and for large problems storage of the basis
vectors alone becomes burdensome. Unfortunately, in many cases practical values of
k fail to produce sufficiently accurate eigenvalue estimates. A simple solution is to
restart the iteration, using information culled from the factorization (1) to refine the
starting vector v in a manner that enriches components in the direction of desired
eigenvectors while damping unwanted eigenvectors. This process is most commonly
implemented through a polynomial filter : the starting vector for the new Arnoldi
factorization takes the form

v+ = ψ(A)v

for some polynomial ψ, generally of low degree. Strategies for constructing ψ vary.
Saad advocated a choice designed to produce v+ as a linear combination of the desired
Ritz vectors [13]. Later methods chose ψ to be small over an adaptively identified
region of the complex plane containing only the unwanted eigenvalues, but such pro-
cedures proved difficult to reliably automate. Sorensen proposed a less elaborate
strategy: take ψ to be a polynomial whose roots match the undesired Ritz values [14].
More precisely, suppose we seek m eigenvalues and have already built an Arnoldi fac-
torization of dimension k = m+p for some p > 0. Sort the eigenvalues of Hk into the
m possessing the desired trait (e.g., those rightmost or largest in magnitude), labeled
θ1, . . . , θm, and the remaining p values θm+1, . . . , θm+p, which we implicitly assume
are coarse approximations to eigenvalues we do not seek. Set ψ(z) =

∏p
j=1(z−θm+j),

so that

v+ =
p∏
j=1

(A− θm+jI)v.

These roots of ψ, the undesired Ritz values, are called exact shifts. Such shifts form an
essential part of the ARPACK library [9], and their efficacy is responsible in no small
part for the popularity enjoyed by that software and MATLAB’s subordinate eigs
command. (In the same paper that advocated exact shifts, Sorensen also proposed
a robust method of implicitly restarting the Arnoldi algorithm using the roots of an
arbitrary filter polynomial [14]. An alternative implementation, Stewart’s Krylov–
Schur algorithm, requires the use of exact shifts [15].)

Numerous computational examples demonstrate the success of exact shifts; see,
e.g., [3, 4, 9]. A convergence proof would require that one make precise the notion that
the p Ritz values used as shifts approximate the unwanted eigenvalues. For Hermitian



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ARNOLDI WITH EXACT SHIFTS CAN FAIL 3

A an appeal to the interlacing theorem [11] suffices. Labeling the eigenvalues of A as
λ1 ≤ λ2 ≤ · · · ≤ λn, there can be at most one Ritz value in the interval (λ1, λ2), two
Ritz values in (λ2, λ3), and so on. This interlacing forms the basis of Sorensen’s proof
that for a Hermitian matrix the restarted Arnoldi algorithm converges to extreme
eigenvalues.1 In the years since the introduction of exact shifts, a convergence proof
for non-Hermitian matrices has remained elusive. Several results ensure convergence
provided the exact shifts satisfy an appropriate distribution [3, 4, 8], but conditions
guaranteeing that exact shifts exhibit such behavior have not yet been established.
Indeed, few fine results about the Ritz values of non-Hermitian matrices are known.

The purpose of this note is to provide a counterexample to the conjecture that
the restarted Arnoldi algorithm with exact shifts must converge under hypotheses
resembling those sufficient for the Hermitian case. Our examples illustrate the failure
of the algorithm in the strongest sense, in that the filter polynomial ψ exactly deflates
a sought-after (perfectly conditioned) eigenvalue.

Throughout we assume that all computations are performed in exact arithmetic
and in particular that eigenvalues of the upper Hessenberg matrix Hk are determined
exactly.

2. Simple example. We begin with a small example that clearly demonstrates
how restarting with exact shifts can produce catastrophic results. Suppose we seek
the largest magnitude (and rightmost) eigenvalue λ = 1 and associated eigenvector
u1 = [1 0 0 0]T of the matrix

A =

⎡⎢⎢⎣
1 0 0 0
0 0 6 −2
0 0 0 2
0 0 0 0

⎤⎥⎥⎦ .
We denote the bottom-right 3× 3 submatrix of A by

D =

⎡⎣ 0 6 −2
0 0 2
0 0 0

⎤⎦ .
The desired eigenvalue λ = 1 of A is far from the rest of the spectrum, σ(D) = {0},
and is also fairly well separated [16, p. 46]:

sep(1,D) = ‖(I−D)−1‖−1 = 0.0837 . . . .

In the language of pseudospectra [17], this implies 1 �∈ σε(D) for all ε < 0.0837 . . . ,
where

σε(D) = {z ∈ C : z ∈ σ(D + E) for some E ∈ Cn×n with ‖E‖ < ε}(3)
= {z ∈ C : ‖(zI−D)−1‖ > ε−1}.

Furthermore, the eigenvector u1 is orthogonal to the complementary invariant sub-
space associated with the zero eigenvalue; that is, λ = 1 is perfectly conditioned [2].

1Sorensen’s theorem [14, Thm. 5.9] imposes several reasonable caveats: the starting vector cannot
be deficient in any of the sought-after eigenvectors, and the iteration must not come arbitrarily close
to “lucky breakdown”; i.e., all the subdiagonal entries in Hk must be bounded away from zero, so
none of the intermediate Krylov subspaces fall too close to an invariant subspace.
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4 MARK EMBREE

Apply the restarted Arnoldi method to A with the starting vector v = [1 1 1 1]T .
We seek the m = 1 eigenvalue and will build the Krylov subspace out to dimension
k = m + p = 2 before restarting. Two steps of the Arnoldi algorithm produce the
orthonormal basis vectors

v1 = 1
2

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ , v2 =
√

35
70

⎡⎢⎢⎣
−3

9
1
−7

⎤⎥⎥⎦
and upper Hessenberg matrix

H2 = [v1 v2]∗A[v1 v2] =

[
7/4 3

√
35/140

√
35/4 5/4

]
.

The characteristic polynomial for H2 is

det(λI−H2) = (λ− 7/4)(λ− 5/4)− 3 · 35
4 · 140

= (λ− 1)(λ− 2),

and hence the Ritz values are θ1 = 2 and θ2 = 1 (ordered by decreasing magnitude).
The smaller magnitude (and leftmost) of these is chosen as the exact shift; hence the
filter polynomial ψ(z) = z − 1 produces the new starting vector

v+ = ψ(A)v =

⎡⎢⎢⎣
0
3
1
−1

⎤⎥⎥⎦ .
Note that v+ has no component in the desired eigenvector u1—that is, v+ is contained
in the invariant subspace associated with the zero eigenvalue, and hence the eigenvalue
λ = 1 will exert no influence upon further Arnoldi iterations.

One might suspect that this starting vector has been specially engineered to yield
this behavior. While this is true of the last three components of v, it is curious that
the phenomenon persists even when v is arbitrarily enriched in the eigenvector we
wish to compute. If we set v = [α 1 1 1]T for any α ∈ R, then two steps of the
Arnoldi algorithm yield the upper Hessenberg matrix

H2 =

⎡⎢⎢⎢⎣
6 + α2

3 + α2

3α3

(3 + α2)(24 + 11α2)1/2

(24 + 11α2)1/2

3 + α2

3 + 2α2

3 + α2

⎤⎥⎥⎥⎦
with characteristic polynomial

det(λI−H2) = λ2 − 3λ+ 2 = (λ− 1)(λ− 2).

The Ritz values θ1 = 2 and θ2 = 1 are independent of the bias of the starting vector v
toward the desired eigenvector. As demonstrated in the next section, this behavior is
an instance of a broader phenomenon that will facilitate the design of larger examples.
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ARNOLDI WITH EXACT SHIFTS CAN FAIL 5

3. General construction. While the orthogonal basis for the Krylov subspace
and the resulting Arnoldi factorization (1) have computational advantages, other bases
for Kk(A,v) are often better suited to analysis. Among the choices available (see [15,
Thm. 2.2]), we shall use a decomposition introduced by Ruhe [12, sect. 2]. Suppose
dim Kk(A,v) = k. Arrange the Krylov basis vectors v, Av, . . . , Ak−1v into the
columns of

Kk =
[

v Av · · · Ak−1v
]
,

and define the companion matrix

Ck =

⎡⎢⎢⎢⎣
c1

1 c2
. . .

...
1 ck

⎤⎥⎥⎥⎦ ∈ C
k×k

for constants c1, . . . , ck; unspecified entries equal zero. A direct calculation reveals

AKk −KkCk = re∗k(4)

for the vector

r := Akv −
k∑
j=1

cjAj−1v ∈ Kk+1(A,v).

Now since

RanKj = RanVj = Kj(A,v), j = 1, . . . , k,

there exists some invertible Rk ∈ Ck×k such that

Kk = VkRk.

Recalling that Hk = V∗
kAVk, pre- and postmultiply (4) by V∗

k and R−1
k to obtain

Hk −RkCkR
−1
k = V∗

k re∗kR
−1
k .

If c1, . . . , ck are chosen such that r ⊥ Kk(A,v) = RanVk, we conclude that

Hk = RkCkR
−1
k ;

i.e., the companion matrix Ck and the upper Hessenberg matrix Hk are similar and
thus have the same eigenvalues. This development facilitates the following result.

Theorem 3.1. Let θ1, . . . , θk denote the Ritz values produced by k ≤ � steps of the
Arnoldi algorithm applied to the matrix D ∈ C�×� with starting vector w ∈ C�, where
dim Kk(D,w) = k. For any T ∈ Cm×m, m ≤ k, with spectrum σ(T) ⊆ {θ1, . . . , θk}
(respecting multiplicity) and any x ∈ Cm, k steps of the Arnoldi process applied to the
matrix and starting vector

A =
[

T 0
0 D

]
, v =

[
x
w

]
produce the identical Ritz values θ1, . . . , θk.
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6 MARK EMBREE

Proof. To write a Krylov factorization for Kk(D,w), we define

K̂k =
[

w Dw · · · Dk−1w
]
, Ck =

⎡⎢⎢⎢⎣
c1

1 c2
. . .

...
1 ck

⎤⎥⎥⎥⎦ ∈ C
k×k,

with coefficients c1, . . . , ck chosen, e.g., via the Gram–Schmidt process, to ensure

r̂ := Dkw −
k∑
j=1

cjDj−1w

is orthogonal to Kk(D,w). This choice gives σ(Ck) = {θ1, . . . , θk}. Now with

Kk =
[

v Av · · · Ak−1v
]
,

observe that

AKk −KkCk = re∗k,

where

r := Akv −
k∑
j=1

cjAj−1v =
[

Tkx−∑k
j=1 cjT

j−1x

Dkw −∑k
j=1 cjD

j−1w

]
.

Since σ(T) ⊆ {θ1, . . . , θk} (respecting multiplicity), the polynomial

zk −
k∑
j=1

cjz
j−1 =

k∏
j=1

(z − θj)

annihilates T, leaving

r =
[
0
r̂

]
.

It follows that r is orthogonal to Kk(A,v), and hence the Ritz values for A and v
drawn from this subspace must be θ1, . . . , θk.

As Ritz values are invariant to unitary similarity transformations, the matrix A
and v in the theorem could be replaced by Q∗AQ and Q∗v for any unitary matrix Q ∈
Cn×n. Of fundamental importance is the fact that the invariant subspace associated
with σ(T) be orthogonal to the one associated with σ(D). The matrix T need not be
normal nor even diagonalizable.

This result (which relates to the example of maximal Krylov subspaces for deroga-
tory matrices given in [3, p. 1081]) suggests a procedure for manufacturing examples
like the one presented in section 2. The following approach presumes that one seeks
the largest magnitude eigenvalues of a matrix (as is typical, e.g., after performing a
shift-invert or Cayley transformation of the original matrix [10]).

1. Find a matrix D and starting vector w such that the Ritz values produced by
k ≥ 2m steps of the Arnoldi process, when ordered by decreasing magnitude, satisfy

|θm| > |θm+1| ≥ · · · ≥ |θ2m| > max
λ∈σ(D)

|λ|.(5)
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ARNOLDI WITH EXACT SHIFTS CAN FAIL 7

2. Construct a matrix T ∈ Cm×m with eigenvalues θm+1, . . . , θ2m; take x ∈ Cm

to be any vector.
3. Build the matrix and starting vector

A =
[
T 0
0 D

]
, v =

[
x
w

]
.

We wish to compute the largest magnitude eigenvalues of A, which by (5) are the
eigenvalues θm+1, . . . , θ2m of T. Apply k steps of the Arnoldi process, resulting in the
same Ritz values obtained in step 1.

4. The exact shift procedure will select Ritz values θm+1, . . . , θk as the roots of
the filter polynomial. These shifts include the eigenvalues of A we seek, which are
thus deflated from v and hence cannot be recovered by the restarted iteration.

Examples of this sort rely on Ritz values that fall well beyond all the eigenvalues of
D. If that matrix is normal, then all its Ritz values would be contained in the convex
hull of its spectrum. Hence no normal D will give Ritz values larger in magnitude
than (or further to the right of) its eigenvalues, and consequently no such matrix is
suitable for use in the above construction. Nonnormality thus plays a central role in
examples of this form. Both the example of section 2 and the one we shall next present
have been designed so that the eigenvalues of interest are not unduly influenced by
this nonnormality and hence would likely be meaningful in applications (e.g., D may
be far from normal, but the desired eigenvalues of A are well separated from D). As
in [4, section 4.4], nonnormality associated with undesired eigenvalues complicates
convergence to desired, ideally conditioned eigenvalues.

4. Larger example. Next we follow the procedure just described to produce a
scenario that perhaps appears less contrived than the 4× 4 example of section 2. To
begin, consider the upper triangular matrix D = Λ + βSγ , where

Λ = diag(λ1, . . . , λn), S =

⎡⎢⎢⎢⎣
0 s1

0
. . .
. . . sn−1

0

⎤⎥⎥⎥⎦ ,
with

λj = −α+
2α(j − 1)
n− 1

, sj =
j

n− 1

for parameters α, β, γ ≥ 0. The spectrum of this matrix is uniformly distributed over
the interval [−α, α]. For α > 0 the matrix is diagonalizable, with β and γ controlling
the conditioning of the eigenvalues. Qualitatively, the growth of sj with j causes
eigenvalues on the right end of the spectrum to exhibit greater sensitivity than those
on the left. Increasing β magnifies the ill-conditioning throughout the spectrum, while
increasing γ improves the conditioning, most acutely for the leftmost eigenvalues.

In the example that follows, D has dimension n = 100 with α = 1/2 and β = γ =
4. Figure 1(a) shows the spectrum, numerical range (2), and ε-pseudospectra (3) of
D. The matrix exhibits a moderate departure from normality, with the right half of
the spectrum especially sensitive.

Figure 1(b) shows k = 10 Ritz values for D with the starting vector w =
[1, . . . , 1]T . If we seek m = 5 eigenvalues, then the exact shift strategy would choose
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Fig. 1. Illustration of the example discussed in section 4. (a) The eigenvalues (dots
covering the segment [−1/2, 1/2]), ε-pseudospectra (boundaries shown as solid lines for ε =
10−1, 10−3, . . . , 10−9), and the numerical range (boundary shown as a dashed line) for D. (b)
The eigenvalues of D with the k = 10 Ritz values for D and w (crosses); the gray circles indicate
the magnitude of the fifth and sixth largest Ritz values. (c) The eigenvalues of A. (d) The eigen-
values of A (dots) with k = 10 Ritz values for A and v (circles and crosses); the smallest five in
magnitude (circles) match the largest magnitude eigenvalues of A and will be used as exact shifts.

the k −m = 5 smallest magnitude Ritz values as roots of the filter polynomial; these
Ritz values are the leftmost ones shown in the figure. Comparing this with Figure 1(a),
notice that these Ritz values are outside the ε-pseudospectra of A for all ε ≤ 10−3;
equivalently, the “sep” of all these Ritz values from D is larger than 10−3.

We now follow the recipe outlined above to obtain an A and v for which these
shifts would be catastrophic. Let T ∈ C

5×5 be a diagonal matrix whose eigenvalues
equal those five smallest magnitude Ritz values, and set A to be the 105×105 matrix
A = diag(T,D); the eigenvalues of A are shown in Figure 1(c). By design, the
eigenvalues of T are the largest magnitude eigenvalues of A, and they all fall beyond
the ε = 10−3 pseudospectrum of D.

Now compute k = 10 Ritz values for A with v = [xT wT ]T for any choice
of x, shown in Figure 1(d). (The computation to produce this illustration used x =
[1, . . . , 1]T , but that choice has no influence on the figure.) As ensured by the theorem,
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these Ritz values are identical to those obtained from D and w. To compute the largest
magnitude eigenvalues of A, the exact shift strategy picks as shifts the five smallest
Ritz values—which coincide with the five largest magnitude eigenvalues of A. Again,
the exact shift procedure will deflate precisely those eigenvalues we wish to compute.

5. Discussion. Our aim here has been to address a theoretical question con-
cerning the convergence of the restarted Arnoldi algorithm with exact shifts. In no
way do we suggest that the behavior our examples exhibit is commonplace. The exact
shift procedure remains the most robust general-purpose method for restarting the
Arnoldi method, endorsed by years of successful computation. Our constructions rely
on special choices for the starting vector (the components in w) and a fixed number
of steps; by changing w, or increasing or decreasing k, one may well converge to the
correct eigenvalues without incident. Even with problematic w and k, the round-
ing errors that occur in practical computations can allow the desired eigenvectors to
emerge after numerous additional iterations. (Indeed, when applied to the example
in section 4, eigs eventually finds the five desired eigenvalues.)

On those occasions when ARPACK fails to converge, the culprit is likely more
mundane than the extreme failure exhibited here. For example, the requested eigen-
values may form part of a tight cluster, in which case any shift procedure would
struggle to develop, in a tractable number of iterations, a polynomial filter that is
large on the desired eigenvalues while being small on those nearby undesired eigen-
values. Such behavior is explained by the conventional restarted Arnoldi convergence
analysis cited in the introduction.

The mere existence of examples for which the restarted Arnoldi algorithm with
exact shifts deflates the desired eigenvalues underscores the need for a deeper un-
derstanding of the behavior of Ritz values of non-Hermitian matrices. Though these
eigenvalue estimates must fall within the numerical range, little else is known, de-
terministically or stochastically, about their distribution. Progress on this important
problem could provide a foundation for a robust convergence theory for the restarted
Arnoldi algorithm and illuminate many other corners of iterative linear algebra.

Acknowledgments. I thank Rich Lehoucq for drawing my attention to Ruhe’s
paper [12], and Howard Elman for his kind hospitality during a visit to the University
of Maryland, where this work was begun. The pseudospectra in the figure were
computed using the EigTool package of T. G. Wright [18].
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RELATIVE PERTURBATION BOUNDS FOR EIGENVALUES OF
SYMMETRIC POSITIVE DEFINITE DIAGONALLY DOMINANT

MATRICES∗

QIANG YE†

Abstract. For a symmetric positive semidefinite diagonally dominant matrix, if its off-diagonal
entries and its diagonally dominant parts for all rows (which are defined for a row as the diagonal
entry subtracted by the sum of absolute values of off-diagonal entries in that row) are known to
a certain relative accuracy, we show that its eigenvalues are known to the same relative accuracy.
Specifically, we prove that if such a matrix is perturbed in a way that each off-diagonal entry and
each diagonally dominant part have relative errors bounded by some ε, then all its eigenvalues have
relative errors bounded by ε. The result is extended to the generalized eigenvalue problem.

Key words. relative perturbation, eigenvalues, diagonal dominant matrix

AMS subject classifications. 65F35, 15A42

DOI. 10.1137/060676349

1. Introduction. The study of relative perturbation theory and high relative
accuracy algorithms has been a subject of great interest for many years; see [7, 12, 13]
for an overview. For the matrix eigenvalue or singular value problems, by restricting
perturbations to those that preserve certain structure and are small entrywise, the
perturbation bounds could be strengthened, and thus even some small singular values
or eigenvalues can be guaranteed to have small relative perturbations; see [5, 6, 7,
9, 10, 14, 16, 15, 19] for some of the references. We note that such results can only
be established by considering matrices perturbed within certain classes, and in some
cases, the matrices may need to be reparameterized; see [7, 9, 14] for examples.

In this paper, we develop a relative perturbation theory for eigenvalues of sym-
metric positive semidefinite diagonally dominant matrices (or symmetric diagonally
dominant matrices with nonnegative diagonals). Diagonally dominant matrices arise
in a large variety of applications and form one of the most well-studied classes of
matrices; see [18] for some recent interest. While the property of diagonal dominance
has traditionally been used more in solving linear systems, in recent years, this is
also exploited for eigenvalue computations. In [3], Barlow and Demmel develop en-
trywise perturbation analysis and algorithms for the eigenvalues of symmetric scaled
diagonally dominant matrices. Their perturbation results [3] show that the rela-
tive perturbations on eigenvalues, when each entry of the matrix has small relative
perturbation, depend on a condition number, which is essentially related to the diag-
onal dominance. In [1, 2], Alfa, Xue, and Ye show that the smallest eigenvalue of a
diagonally dominant M-matrix is determined and can be computed to high relative
accuracy without any condition number if the row sums (i.e., the diagonally dominant
parts) are known to high relative accuracy. Under the same assumptions, Demmel
and Koev [8] show that all singular values of a diagonally dominant M-matrix are
determined and can be computed to high relative accuracy. More refined results on

∗Received by the editors November 30, 2006; accepted for publication (in revised form) by
F. Dopico June 22, 2007; published electronically February 27, 2009. This research was supported
in part by NSF grant DMS-0411502.
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12 QIANG YE

diagonally dominant M-matrices are given by Peña [17]. Other related perturbation
results include those for M-matrices by Elsner [11], Xue [21], and Xue and Jiang [20],
which all contain some condition numbers. Note that an M-matrix can be scaled to
become a diagonally dominant M-matrix.

Here, we shall prove that if a symmetric positive semidefinite diagonally dominant
matrix A = [aij ] is perturbed symmetrically with each off-diagonal entry aij and each
diagonally dominant part (vi := aii −

∑
j �=i |aij |) having relative error bounded by

ε, then the relative error of each eigenvalue is bounded exactly by ε. We shall also
extend our results to the generalized eigenvalue problem. Compared with the results
of [3], our perturbation bound is independent of any condition number. Compared
with that of [2, 8], we do not require the matrix to be an M-matrix, but rather we
require symmetry. Also our bound is sharp and is valid for all eigenvalues.

We remark that the key to obtain the strong bound is to consider the diagonal
dominant parts, replacing the diagonal entries, as the parameters representing such
matrices. Namely, the eigenvalues may not be determined to high relative accuracy
by the entries of A, but they are so determined by its off-diagonal entries and the
diagonal dominant parts. This parameterization is originally introduced in Alfa, Xue,
and Ye [1, 2] for diagonally dominant M-matrices. We concentrate on the perturbation
theory in this paper but consider algorithms that compute all eigenvalues to the order
of machine precision in a separate work [22].

The rest of this paper is organized as follows. We first give in section 2 some defi-
nitions and preliminary results. We then present the perturbation results in section 3.

2. Preliminaries and notation. Throughout this paper, we shall use the fol-
lowing notation. Given a matrix A = [aij ], we use |A| = [|aij |] and sign(A) =
[sign(aij)], where sign(x) denotes the sign of x with sign(0) = 1. Given a vector
v = [vi], diag{v} is the diagonal matrix with the entries of v on its diagonal. A ≥ 0
denotes that A is symmetric positive semidefinite, and A ≥ B denotes that A−B is
symmetric positive semidefinite.

The basis of our relative perturbation theory is a reparameterization of the matri-
ces by their off-diagonal entries and their diagonal dominant parts. This is originally
introduced in [1, 2] for diagonal dominant M-matrices and can be done for a general
matrix as follows.

Definition 2.1. Given an n× n matrix M = [mij ] and an n-vector v = [vi], we
use D(M, v) to denote the matrix A = [aij ] whose off-diagonal entries are the same
as M and whose ith diagonal entry is aii = vi +

∑
j �=i |mij |. Namely, we write

(2.1) A = D(M, v)

and call it the representation of A by diagonally dominant parts v if

aij = mij for i �= j; and aii = vi +
∑
j �=i

|mij |.

Note that the diagonal entries of M , if given, are not used in defining the matrix
D(M, v). Now, given a matrix A = [aij ], we denote by AD the matrix whose off-
diagonal entries are the same as A and whose diagonal entries are zero. Then, letting
vi = aii −

∑
j �=i |aij | and v = (v1, v2, . . . , vn)T , we have

A = D(AD, v)

as the representation of A by diagonally dominant parts. In this way, the parameters
defining A are those of AD (i.e., the off-diagonal entries ofA) and v (i.e., the diagonally
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dominant parts). The diagonal entries are not used to define A in this representation.
Definition 2.2. A matrix A = [aij ] is said to be diagonally dominant if |aii| ≥∑

j �=i |aij | for all i.
The diagonally dominant matrix defined here is sometimes referred to as being

weakly diagonally dominant. A matrix represented in A = D(AD, v) is diagonally
dominant with nonnegative diagonals if and only if vi ≥ 0 for all i.

Throughout we shall consider symmetric matrices D(AD , v) with vi ≥ 0 for all i,
i.e., symmetric diagonally dominant matrices with nonnegative diagonals. Clearly, a
matrix is symmetric diagonally dominant with nonnegative diagonals if and only if it
is symmetric positive semidefinite and diagonally dominant.

3. Relative perturbation bounds. We present relative perturbation bounds
for symmetric positive semidefinite diagonally dominant matrices, which are repre-
sented in the form A = D(AD, v) with vi ≥ 0 for all i.

We first introduce some notation. For A = [aij ], let

Ti = diag(a1,i+1, a2,i+2, . . . , an−i,n),(3.1)

n−i i n−i i

Di =
( |Ti| 0

0 0

)
n−i

i
, Ni =

(
0 0
Ti 0

)
i

n−i
,(3.2)

and

(3.3) Mi = sign(Ni), Li = I +Mi.

In other words, Ti is the diagonal matrix whose diagonal is given by the ith diagonal
of A above the main diagonal; Di is the n × n diagonal matrix whose diagonals are
absolute values of Ti, extended by zeros; and Ni is the matrix obtained from A by
striking out all entries except the ith diagonal below the main diagonal. Clearly, Li

is lower triangular with ±1 on the ith diagonal.
We first give a lemma that gives an LDLT factorization of a symmetric banded

matrix that has a single band and zero diagonal dominant part. A feature of this
factorization is that the parameters defining the matrix are entirely contained in the
D matrix.

Lemma 3.1. Let Ai be the symmetric matrix whose entries are zero everywhere
except in the ith diagonal, which is a1,i+1, a2,i+2, . . . , an−i,n, and in the main diagonal,
whose jth entry is the sum of absolute values of the off-diagonal entries in the jth row,
i.e., Ai = D(Ni +NT

i , 0) in the representation (2.1). Then, we have Ai = LiDiL
T
i .

Proof. Since the diagonally dominant part is 0, we can write

Ai = Ni +NT
i +

(
0 0
0 |Ti|

)
+
( |Ti| 0

0 0

)
.

We have

LiDiL
T
i = (I +Mi)Di(I +MT

i )

= Di +MiDi +DiM
T
i +MiDiM

T
i

= Di +Ni +NT
i +NiM

T
i = Ai,

where we note that

NiM
T
i =

(
0 0
0 |Ti|

)
.
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There is a similar result for the case i = 1 presented in [4, Example 5.1, p. 196],
which was the inspiration of this work. We next decompose A into a sum of banded
matrices with a single band and hence, using the above lemma, decompose it into a
sum of LDLT factorizations.

Lemma 3.2. Let A = [aij ] be a symmetric matrix, and let A = D(AD, v) be its
representation in (2.1) with v = [v1, v2, . . . , vn]T . Then

(3.4) A = V0 + L1D1L
T
1 + · · ·+ Ln−1Dn−1L

T
n−1,

where V0 = diag{v1, . . . , vn}, and Li, Di (for 1 ≤ i ≤ n − 1) are as defined in (3.3)
and (3.2).

Proof. Let Ai = D(Ni +NT
i , 0) as defined in Lemma 3.1. Then the off-diagonal

entries of
∑n−1

i=1 Ai are the same as those of A. Since each Ai has zero diagonal
dominant part, it is easy to see that

∑n−1
i=1 Ai also has zero diagonal dominant part.

Thus, we have

n−1∑
i=1

Ai = D(A, 0).

Now, with O denoting the zero matrix, we have

A = D(O, v) +D(A, 0) = V0 +
n−1∑
i=1

Ai,

and hence (3.4) follows from Lemma 3.1.
To clearly see the decomposition (3.4), we show an example of 3 × 3 matrix

A = D(AD, v) as

A =

⎛⎝ a11 a21 a31

a21 a22 a32

a31 a32 a33

⎞⎠
=

⎛⎝ v1
v2

v3

⎞⎠+

⎛⎝ |a21|+ |a31| a21 a31

a21 |a21|+ |a32| a32

a31 a32 |a31|+ |a32|

⎞⎠
=

⎛⎝ v1
v2

v3

⎞⎠+

⎛⎝ 1
s21 1

s32 1

⎞⎠⎛⎝ |a21|
|a32|

0

⎞⎠⎛⎝ 1 s21
1 s32

1

⎞⎠
+

⎛⎝ 1
0 1
s31 0 1

⎞⎠⎛⎝ |a31|
0

0

⎞⎠⎛⎝ 1 0 s31
1 0

1

⎞⎠ ,

where sij = sign(aij).
We are now ready to present our perturbation results.
Theorem 3.3. Let A = [aij ] and Ã = [ãij ] be two symmetric positive semidefinite

diagonally dominant matrices, and let λ1 ≤ λ2 ≤ · · · ≤ λn and λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃n be
their eigenvalues, respectively. If, for some 0 ≤ ε < 1,

(3.5) |aij − ãij | ≤ ε|aij | for all i �= j
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and

(3.6) |vi − ṽi| ≤ εvi for all i,

where vi = aii −
∑

j �=i |aij | and ṽi = ãii −
∑

j �=i |ãij | (i.e., A = D(AD, v) and Ã =
D(ÃD, ṽ) are, respectively, the representations (2.1) of A and Ã with v = [vi] and
ṽ = [ṽi]), then we have for all i

(3.7) |λ̃i − λi| ≤ ελi.

Proof. Let Di, Li and D̃i, L̃i be the matrices defined from A and Ã, respectively,
according to (3.2) and (3.3). By (3.5), aij and ãij have the same sign. Since Li and
L̃i are defined from the signs of aij and ãij , we have

Li = L̃i.

Furthermore, it follows from (3.5) and (3.6) that

(1− ε)|aij | ≤ |ãij | ≤ (1 + ε)|aij |, (1− ε)vi ≤ ṽi ≤ (1 + ε)vi,

where we note that vi ≥ 0 and ṽi ≥ 0 by assumption. This leads to

(1− ε)Di ≤ D̃i ≤ (1 + ε)Di, (1− ε)V0 ≤ Ṽ0 ≤ (1 + ε)V0,

where V0 = diag(v) and Ṽ0 = diag(ṽ). Now, applying Lemma 3.2, we have

A = V0 + L1D1L
T
1 + · · ·+ Ln−1Dn−1L

T
n−1

and

Ã = Ṽ0 + L1D̃1L
T
1 + · · ·+ Ln−1D̃n−1L

T
n−1.

Thus

(3.8) (1− ε)A ≤ Ã ≤ (1 + ε)A,

from which it follows that (1− ε)λi ≤ λ̃i ≤ (1 + ε)λi. The theorem is proved.
Remark 1. From the assumptions (3.5) and (3.6), we have that |ãii−aii| ≤ ε|aii|;

see [2]. The converse is not true; namely, |ãij − aij | ≤ ε|aij | for all i, j does not imply
|vi − ṽi| ≤ εvi.

Remark 2. Our bound is sharp. This can be verified by considering a diagonal A.
Remark 3. We have assumed in the theorem that both A and Ã are symmetric

positive semidefinite and diagonally dominant. However, we can assume only that A
is symmetric positive semidefinite and diagonally dominant and that Ã is symmetric
and satisfies (3.6), which imply that Ã is also positive semidefinite and diagonally
dominant, because it follows from (3.6) that ṽi ≥ 0.

The above theorem can be easily generalized to the definite symmetric pencil
eigenvalue problem Ax = λBx.

Theorem 3.4. Let A = [aij ], Ã = [ãij ] be symmetric positive semidefinite
diagonally dominant matrices and B = [bij ] and B̃ = [̃bij ] be symmetric positive
definite diagonally dominant matrices. Let λ1 ≤ λ2 ≤ · · · ≤ λn and λ̃1 ≤ λ̃2 ≤ · · · ≤
λ̃n be the eigenvalues of the pencil A−λB and Ã−λB̃, respectively. Let A = D(AD, v),
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B = D(BD, w), Ã = D(ÃD, ṽ), and B̃ = D(B̃D, w̃) be their diagonal dominant part
representations (2.1) with v = [vi], w = [wi], ṽ = [ṽi], and w̃ = [w̃i]. If, for some
0 ≤ ε, ε′ < 1,

|aij − ãij | ≤ ε|aij |, |vi − ṽi| ≤ εvi

and

|bij − b̃ij | ≤ ε′|bij |, |wi − w̃i| ≤ ε′wi,

where i �= j, then for all i

|λ̃i − λi| ≤ ε+ ε′

1− ε′λi.

Proof. As in the proof of Theorem 3.3, we have the bound (3.8) for Ã and the
following corresponding bound for B̃:

(3.9) (1− ε′)B ≤ B̃ ≤ (1 + ε′)B.

Now, using the minimax theorem, we obtain

1− ε
1 + ε′

λi ≤ λ̃i ≤ 1 + ε

1− ε′λi,

which leads to the theorem.
The theorems show that if the data D(AD, v) representing A is known to a certain

relative accuracy, then its eigenvalues are determined to the same relative accuracy.
This is even true for the zero eigenvalue. For the smallest eigenvalue of a diagonally
dominant M-matrix, our result improves the perturbation bound in [2], where only
|λ − λ̃|/λ ≤ (2n − 1)ε + O(ε2) is obtained. It can be applied then to the electronic
circuit application as in [2] to obtain significantly improved perturbation bounds on
the circuit speed. The improvement is achieved of course with the condition that the
matrix is symmetric.

Acknowledgments. I would like to thank Prof. Jim Demmel for many valuable
discussions. This work was inspired by an illuminating example in his book [4]. I
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AN EFFICIENT METHOD FOR ESTIMATING THE OPTIMAL
DAMPERS’ VISCOSITY FOR LINEAR VIBRATING SYSTEMS

USING LYAPUNOV EQUATION∗

NINOSLAV TRUHAR† AND KREŠIMIR VESELIĆ‡

Abstract. This paper deals with an efficient algorithm for dampers’ viscosity optimization in
mechanical systems. Our algorithm optimizes the trace of the solution of the corresponding Lyapunov
equation using an iterative method which calculates a low rank Cholesky factor for the solution of
the corresponding Lyapunov equation. We have shown that the new algorithm calculates the trace
in O(m) flops per iteration, where m is a dimension of matrices in the Lyapunov equation (our
coefficient matrices are treated as dense).

Key words. damped vibration, Lyapunov equation, optimization of viscosities of dampers
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1. Introduction. This paper can be considered as a certain continuation of the
paper [16]. In [16] we derived some new estimates for the eigenvalue decay rate of
the Lyapunov equation AX +XAT = B with a low rank right-hand side B; we also
proposed a new choice of the ADI parameters for calculating X. All this was based on
newly established bounds on the trace of a solution to the Lyapunov equation with a
general stable coefficient matrix. The trace itself was calculated from the solution of
the Lyapunov equation which has been obtained using low rank Cholesky factor ADI
(LRCF-ADI) proposed in [12], [8].

In this paper we use the results from [16] to develop an efficient algorithm for
dampers’ viscosity optimization in mechanical systems. Our penalty function is the
trace of the Lyapunov solution X (advantages of this choice were discussed in [4], [17],
[18]). Our main issue here is to calculate only the trace and not the whole solution of
the Lyapunov equation with obvious computational advantages.

We consider a damped linear vibrational system described by the differential
equation

Mẍ+Dẋ+Kx = 0,(1.1)
x(0) = x0, ẋ(0) = ẋ0,(1.2)

where M,D,K (called mass, damping, stiffness matrices, respectively) are real, sym-
metric matrices of order n with M,K positive definite and D = Cu +C, where Cu is
positive definite and represents the internal damping, which is usually taken to be a
small multiple of the critical damping; that is,

Cu = αCcrit ,

∗Received by the editors February 20, 2007; accepted for publication (in revised form) by F. Dopico
October 22, 2007; published electronically February 27, 2009.

http://www.siam.org/journals/simax/31-1/68305.html
†Department of Mathematics, J.J. Strossmayer University of Osijek, Trg Ljudevita Gaja 6, 31000

Osijek, Croatia (ntruhar@mathos.hr). Part of this work was done while this author was visiting
the Department of Mathematics, University of Kentucky, Lexington, Kentucky, under the support
of a postdoctoral research award from the National Foundation for Science, Higher Education and
Technological Development of the Republic of Croatia.

‡Lehrgebiet Mathematische Physik, Fernuniversität, 58084 Hagen, Germany (kresimir.veselic@
fernuni-hagen.de).

18



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

METHOD FOR OPTIMIZATION OF DAMPERS’ VISCOSITY 19

Ccrit = 2M1/2
√
M−1/2KM−1/2M1/2, α = 2–10%

(see [11, pp. 26, 260]), and C is positive semidefinite.
A very important question arises in considerations of such systems: for given mass

and stiffness determine the available dampers’ viscosities so as to ensure an optimal
evanescence.

This optimization problem has been recently considered in [17], [14], [4], [15].
For such optimization one can use different optimization criteria (see [15]). One of

the frequently used criteria is the so-called spectral abscissa criterion, which requires
that a maximal real part of the eigenvalues λk be minimal, symbolically

(1.3) sp := max
k

Reλk → min,

where λk are the complex eigenvalues of the system

(1.4)
(
λ2M + λD +K

)
x = 0,

obtained from (1.1), simply using the substitution x(t) = eλtx.
For example, this criterion was used in [5] and [7]. In [5] a nice result on optimal

damping was presented, but as the authors pointed out in section 4, “the only situation
for which it is feasible to compute explicitly all possible solutions of the optimization
problem (2.3) by hand is when n equals 2,” which means that they present an exact
form of the optimal damping matrix for systems that are 2 × 2. In [7] the problem
of optimal damping (optimal dampers’ positions, or, more precisely, optimal regions)
has been solved for a string vibration.

Another criterion, used in [19], [17], [15], [4], is given by requirement of the
minimization of the total energy of the system, that is,

(1.5)
∫ ∞

0

E(t) dt→ min.

The advantages of this criterion are (i) its obvious closeness to the total energy of
the vibration and (ii) its smoothness as the function of the damping parameters,
which allows standard methods of minimization via gradient or Hessian. Note that
the latter property is not shared by the spectral penalty function (1.3). On the other
hand, Veselić in [20], [21], [22] has shown that the solution of the Lyapunov equation
provides rigorous bounds to the energy decay of a vibrating system.

Since the criterion (1.5) depends on the initial condition, the simplest way to
correct this is to take the average of (1.5) over all initial states of the unit total
energy and a given frequency range. It can be shown that this average is the trace of
the solution of the corresponding Lyapunov equation.

A general algorithm for the optimization of damping does not exist. Available
algorithms optimize only viscosities of dampers, not their positions. Two types
of algorithms are currently in use. The first are the Newton-type algorithms for
higher-dimensional (constrained or unconstrained) problems which use some Lya-
punov solvers, and the second are the algorithms which explicitly calculate the trace
of the solution of the corresponding Lyapunov equation.

An algorithm of the second type was presented in [19] for the case when Cu = 0
and the rank of the matrix C is one. Moreover, in [19] Veselić has given an efficient
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algorithm which calculates an optimal v, where C = vcc∗, and the optimal viscosity
is given by a closed formula.

On the other hand, in [15] a Newton-type algorithm which calculates optimal
viscosity v has been proposed. This algorithm covers the case with internal damping
(Cu �= 0) with C = vC0C

∗
0 , where r ≡ rank(C0) > 1; it calculates the trace of

the solution of the corresponding Lyapunov equation as a function of viscosity v of
dampers in O(r3m3) flops, where m = 2n (dimension of the phase space). This means
that if the number of degrees of freedom of dampers r is much less than n (r = 2, 3, 4),
this algorithm can be more efficient than the standard methods which use Lyapunov
solvers such as, e.g., Bartels–Stewart, which cost O(m3) operations per iteration.

Unfortunately, all existing algorithms calculate the solution of the Lyapunov equa-
tion and do not take advantage of the fact that we need only the trace of the solution.

Thus, we propose a different approach for optimization of the trace of the solution
of the corresponding Lyapunov equation. Our algorithm calculates only the trace of
the solution of the Lyapunov equation using an iterative method for an LRCF of the
solution of the corresponding Lyapunov equation. This fact allows a more efficient
memory usage. Further, in the case when only a small part of undamped spectra
(say, the first s smallest undamped eigenvalues) is dominant, our algorithm needs
O(r3)+O(rm)+O(s3) flops per iteration. Since standard optimization processes, such
as the golden section search (which has been implemented in the MATLAB function
fminbnd), need 20–30 iterations, if r � n and s � n, our algorithm minimizes the
trace of the Lyapunov equation in O(rm) operations.

We also present a new error bound for the trace approximation, which shows that
sometimes the structure of the right-hand side of the Lyapunov equation can greatly
influence the accuracy of the solution.

This paper is organized as follows. Section 2 describes a mathematical model we
will use and three different algorithms for optimization of the trace of the solution of
the corresponding Lyapunov equation. Then, section 3 contains the algorithm which
calculates the trace of the solution using LRCF-ADI proposed in [8] (we use the
algorithm described in [12]). Since the proper choice of ADI parameters is crucial for
efficiency of the LRCF-ADI method, we describe two different algorithms for selection
of a suboptimal set of ADI parameters. One was proposed by Penzl in [12], and the
other was proposed in [16] and is based on the result that the optimal set of ADI
parameters in the case of “modal damping” is given by the set of 2s eigenvalues of
the matrix A which correspond to 2s undamped eigenvalues (for more details, see
[16]). In section 4 we present a new error bound for the trace obtained by the new
algorithm.

Finally, in the last section we present two examples. The first example illustrates
the efficiency and accuracy of the new algorithm with respect to the column rank of
the right-hand side of the Lyapunov equation. The second example compares our new
algorithm (applied by using two different suboptimal sets of ADI parameters) with
algorithms from [18], [2], and [15].

We will use the following notation: matrices written in simple mathematical italic
fonts (M , D, or K), for example, will have O(n2) nonzero entries. Matrices written
in mathematical bold fonts (A, B) will have O(m2) nonzero entries, where m = 2n.
The symbol ‖ · ‖ stands for the standard 2-norm, while ‖ · ‖F denotes a Frobenius
norm. R(A) denotes a column space spanned by the columns of the matrix A.

2. Setting the scene. As described in [15], [14], [17], [4], minimization of the
total energy (1.5) is equivalent to minimization of the trace of the solution of the
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Fig. 2.1. The n-mass oscillator with two dampers.

Lyapunov equation. For the sake of completeness, we will shortly describe the basics
of this approach.

We consider a damped linear vibrational system described by the differential
equation

(2.1) Mẍ+Dẋ+Kx = 0,

where M,C,K (called mass, damping, stiffness matrix, respectively) are real, sym-
metric matrices of order n with M,K positive definite and D = Cu + C positive
semidefinite, where Cu describes internal damping. Often the matrix C has a small
rank. An example is the so-called n-mass oscillator or oscillator ladder (Figure 2.1),
where

M = diag(m1,m2, . . . ,mn),

K =

⎡⎢⎢⎢⎢⎢⎣
k0 + k1 −k1

−k1 k1 + k2 −k2

. . . . . . . . .
−kn−2 kn−2 + kn−1 −kn−1

−kn−1 kn−1 + kn

⎤⎥⎥⎥⎥⎥⎦ ,

D ≡ Cu + C = Cu + ve1e
T
1 + v(e3 − e2)(e3 − e2)T .

Here mi > 0 are the masses, ki > 0 are the spring constants or stiffnesses, ei is the
ith canonical basis vector, and v is the viscosity of the damper applied on the ith
mass (in Figure 2.1, k0 = 0). Note that all dampers have the same viscosity and
that rank of the matrix C is two. In this paper we study the system with r equal
dampers where we assume that r � n (usually r = 2, 3, 4), which will allow us to use
a one-dimensional optimization process (MATLAB function fminbnd).

To (2.1) there corresponds the eigenvalue problem

(2.2) (λ2M + λD +K)x = 0 .

Obviously all eigenvalues of (2.2) lie in the left complex plane.
Using the eigenvalue decomposition

(2.3) ΦTKΦ = Ω2 , ΦTMΦ = I,

where Ω = diag(ω1, . . . , ωn), ω1 < · · · < ωn, and setting

(2.4) y1 = Ω ΦTx, y2 = ΦT ẋ,
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(2.1) can be written as

(2.5) ẏ = Ay,

(2.6) y =
[
y1
y2

]
, A =

⎡⎣ 0 Ω

−Ω −ΦTDΦ

⎤⎦
(we are now in a 2n-dimensional phase space), with the solution

y = eAt y0 , where y0 is the initial data.(2.7)

Note that the numbers

(2.8) ω1, ω2, . . . , ωn

are the eigenvalues of the corresponding undamped system

(λ2M +K)x = 0,

and we call them (undamped) eigenfrequencies of the system.
The eigenvalue problem Ay = λy is equivalent to (2.2). The energy of the system

is given by

E(t) =
1
2
ẋ(t)TMẋ(t) +

1
2
x(t)TKx(t) =

1
2
yT y.

Now (1.5) can be written as

(2.9) yT0 Xy0 → min,

where

(2.10) X =
∫ ∞

0

eA
T t eAtdt

is the solution of the Lyapunov equation

(2.11) ATX + XA = −I .

An inconvenience of the criterion (2.9) is its dependence on the initial data y0.
Thus, similarly as in [17], instead of the quantity yT0 Xy0 we are going to take its
mean value over all initial data y with the unit energy ‖y‖2. Therefore, instead of
(2.9) we require

(2.12)
∫
‖y0‖=1

yT0 Xy0 dσ → min,

where dσ is a chosen probability measure on the unit sphere S2n = {y0 ∈ R2n; ‖y0‖ =
1}.

In [17], [10], and [15] it has been shown that (2.12) is equivalent to

(2.13) Tr(ZX)→ min,
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where Z is a symmetric positive semidefinite matrix which may be normalized to have
a unit trace. If we take for the measure σ the measure generated by the Lebesgue
measure on R2n, we obtain Z = 1

2nI.
Further, it is easy to show that

Tr(ZX) = Tr(Y),

where Y is a solution of the so-called dual Lyapunov equation

AY + YAT = −Z.

The structure of the matrix Z has been studied in detail in [10], and some of these
results are presented in [15].

Throughout this paper we will assume that the matrix Z has the form

(2.14) Z =

⎡⎢⎢⎢⎢⎢⎢⎣
0t1 0 0 0 0 0
0 Is 0 0 0 0
0 0 0t2 0 0 0
0 0 0 0t1 0 0
0 0 0 0 Is 0
0 0 0 0 0 0t2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where Is is the s-dimensional identity matrix and 0ti is the ti-dimensional (i = 1, 2)
zero matrix, where t1 and s are defined such that eigenfrequencies from (2.8) smaller
than ωt1 and greater than ωt1+s are not dangerous (observe that t2 = n− t1 − s).

Now we will briefly describe the existing algorithms for optimization (2.13).
In [19] a solution of problem (2.13) has been given in the case when Cu = 0 and

rank(C) = 1. In particular,

(2.15) Tr(ZX(v)) = const+
a

v
+ bv,

where a, b > 0 are constants which can be easily calculated (in O(n) flops), which
makes it possible to find the minimum explicitly by a simple formula. The case
rank(C) > 1 seems to be essentially more difficult to handle.

In [15], problem (2.13) with Cu �= 0 and rank(C) > 1 has been considered. In
particular,

(2.16) Tr(ZX(v)) = −x0 − v bTL(I− vHs)−1bR,

where Hs denotes the upper Hessenberg matrix for whose construction one needs
112
3 r3m3+O(r2m2) operations. Since from (2.16) one can find the first and the second

derivative of the function v → Tr(ZX(v)) almost for free, the whole optimization
process costs 112

3 r3m3 +O(r2m2).
On the other hand, a more general case with the damping matrix

D ≡ Cu + C = Cu + C0diag(v1, . . . , vr)CT0

has been considered in [2]. There, a Newton-type algorithm has been proposed, which
uses the Bartels–Stewart Lyapunov solver.

As we will see in the last section, each of these algorithms has some advantages
in certain situations. But all of them calculate the whole solution at every stage of
the iteration and then use only the trace.
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As we have mentioned in the introduction, our approach here consists of construct-
ing an efficient algorithm which will derive the trace Tr(ZX(v)) using the LRCF-ADI
method, and then find the minimum of the function v � Tr(ZX(v)) using some
standard minimization process such as the golden section search which has been im-
plemented in the MATLAB function fminbnd. Since we calculate only the trace and
not the whole solution, our algorithm is much faster than existing ones which calculate
the whole solution first and then the trace. The next section contains a description
of our new algorithm.

3. The main algorithm. As described in the previous section, our aim is to
minimize the trace of the Lyapunov equation

(3.1) AX + XAT = −GGT ,

where

(3.2) A ≡ A0 − vD =
[

0 Ω
−Ω −αΩk

]
− v

[
0 0
0 C0C

T
0

]
,

where rank(G) = 2s, s� n, and

(3.3) D = D0DT
0 , D0 =

[
0
C0

]
, and C0 = ΦT

[
ei1 , . . . eir

]
.

The vector eij is the ijth canonical basis vector and r is the number of dampers. We
assume that Ω = diag(ω1, . . . , ωn), where ω1 < · · · < ωn.

Note that for Z defined as in (2.14), we have Z = GGT , where

(3.4) G =
[
0 Is 0 0 0 0
0 0 0 0 Is 0

]T
,

G ∈ R
m×2s, s � n. This assumption and the fact that the solution of (3.1) is

positive definite allow us to use the LRCF-ADI method proposed in [8] (see also [9])
and implemented in [12]. As we will see throughout this paper, the choice of this
algorithm for computing the trace of the Lyapunov equation has many advantages.
The most important fact is that by using this algorithm one can find the trace of the
solution without calculating the whole solution, which can substantially speed up the
calculation.

As we have mentioned above, since s � n, we are going to use the LRCF-ADI
algorithm for solving the Lyapunov equation

AX + XAT = −GGT .

The basic code taken from [12] reads as follows.
Algorithm 1 (LRCF-ADI).

INPUT: A, G, {p1, p2, . . . , pimax}
OUTPUT: V = Vimax ∈ Cm×2 s imax , such that VV∗ ≈ X.
1. W1 =

√−2Rep1 (A + p1I)−1G
2. V = W1

FOR: i = 2, 3, . . . , imax
3. Wi =

√
Repi/Repi−1

(
Wi−1 − (pi + pi−1)(A + piI)−1Wi−1

)
4. Vi = [Vi−1 Wi]
END
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Here {p1, p2, . . . , pimax} denotes a set of ADI parameters. As pointed out in [12],
the proper choice of ADI parameters is crucial for efficiency of the LRCF-ADI method.
There exist several routines for selection of ADI parameters. We will describe two of
them.

The first has been presented in [12] and is based on the following two ideas. First,
we generate a discrete set, which “approximates” the spectrum, which is done by a
pair of Arnoldi processes (we calculate the set of Ritz values). Then we choose a
set of shift parameters which is a subset of the set of Ritz values by a heuristic that
delivers a suboptimal set of ADI shifts. As we will see in the last section, sometimes
this choice can yield a poor approximation of the trace, especially in cases when the
viscosity is of small magnitude or in the case when s is not small enough.

The second routine has been proposed in [16] and contains the following four
steps:

1. Find the indices of 1’s on the right-hand side (i.e., find positions of 1’s in the
matrix GGT ).

2. Find the corresponding submatrix of A using these indices (i.e., form the
submatrix As).

3. Take a “little bit bigger block”Ablock (which depends on a particular problem)
which includes the submatrix As.

4. Eigenvalues of the chosen matrix Ablock are ADI parameters (p1, . . . , pl ∈
σ(Ablock)).

Figure 3.1 shows how we form the matrix Ablock.

Fig. 3.1. Choosing of Ablock.

Once we find a proper set of ADI parameters we can proceed with the implemen-
tation of Algorithm 1.

Before giving our algorithm for the trace of the solution of the Lyapunov equation
(3.1), we will point out some facts and introduce some notation which will be used
later.

First, in Algorithm 1 one has to compute the inverse of (A + piI). In our case
(3.1)–(3.3)

A ≡ A0 − vD0 DT
0 ,
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where

A0 =
[

0 Ω
−Ω −αΩk

]
and D0 =

[
0
C0

]
.

Since we consider the problems with rank(D0) = r � n, one can use the Sherman–
Morrison–Woodbury formula for calculation of the inverse (A+ piI)−1 [6, eq. (2.1.4),
p. 51]. For this purpose we will need the notation

(3.5) A0(pi) = A0 + piI .

Now, we can write

A−1 ≡ (A0(pi)− vD0 DT
0 )−1

= A0(pi)−1 + vA0(pi)−1D0

(
Ir − vDT

0 A0(pi)−1D0

)−1
DT

0 A0(pi)−1 .(3.6)

Note that the inverse A0(pi)−1 can be derived directly; that is,

A0(pi)−1 =
[
piI Ω
−Ω piI − αΩk

]−1

=
[
(Ω2 + p2

i I − piαΩk)−1(piI − αΩk) −(Ω2 + p2
i I − piαΩk)−1 Ω

(Ω2 + p2
i I − piαΩk)−1 Ω pi (Ω2 + p2

i I − piαΩk)−1

]
.

(3.7)

This means that all matrices in (3.6) can be computed directly, except

Inv(v, pi) ≡
(
Ir − vDT

0 A0(pi)−1D0

)−1
.(3.8)

The matrix Ir − vDT
0 A0(pi)−1D0 is of order r.

Using the above considerations, we can adapt Algorithm 1 for calculating the
trace of the solution of the Lyapunov equation (3.1) in the following way.

Algorithm 2 (calculating the trace using LRCF-ADI).
INPUT: Ω, C0, v, G, {p1, p2, . . . , p l}
OUTPUT: Tr, Tr stands for trace(X)

0. Tr = 0
1. W1 =

√−2Rep1

(
A0(p1)−1G + vA0(p1)−1D0 Inv(v, p1)DT

0 A0(p1)−1G
)

2. tr(1) =
2 s∑
i

‖W1(:, i)‖2
FOR j = 2, 3, . . . , l

3. Wj =
√

Repj/Repj−1

· (Wj−1 − (pj + pj−1)
(
A0(pj)−1

+ vA0(pj)−1D0 Inv(v, pj)DT
0 A0(pj)−1

)
Wj−1

)
4. tr(j) =

2 s∑
i

‖Wj(:, i)‖2
END

5. Tr =
l∑
i

tr(i)

Assuming that we have a proper set of ADI parameters, we can calculate the
costs for Algorithm 2. Note that every step in Algorithm 2 contains A0(pj)−1G. It
is easy to see that this multiplication costs 2s · O(m) flops. Further, the inner loop
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contains a matrix A0(pj)−1D0 Inv(v, pj)DT
0 A0(pj)−1G, which can be calculated in

2 s r ·(O(m)+O(r) )+2s(mO(r)+2O(m) )+O(r3 ) operations. Altogether this yields
that Algorithm 2 calculates the trace of the solution of the Lyapunov equation in

(3.9) l · ( s r · (O(m) +O(r) ) + s(O(mr) +O(m) ) +O(r3)
)

operations. In our applications we usually have r ≤ 12. Now from (3.9) it follows
that Algorithm 2 with such r needs less than O(sm) flops.

At this point it is important to emphasize that the fact that Algorithm 2 needs
less operations than existing algorithms which calculate the whole solution of the
Lyapunov equation (O(sm) contrary to O(m3)) is not its only advantage. The fact
that Algorithm 2 calculates only the trace of the solution of the Lyapunov equation
implies much more efficient memory usage. Indeed, in each iteration step of Algorithm
2 we have to save only one m × 2s matrix (in each step we overwrite the old one)
instead of standard LRCF-ADI where we have to form the factor which is a matrix
of dimension m× 2s · l, where l is the number of iteration steps.

Since the efficiency and accuracy of Algorithm 2 depend on a proper choice of
ADI parameters, in the next section we will analyze accuracy of the solution obtained
by Algorithm 2 using a new suboptimal set of ADI parameters.

4. Quality of the new choice of ADI parameters. In this section we present
an error bound for the approximation of the trace of the solution of the Lyapunov equa-
tion obtained by Algorithm 1 (Algorithm 2) generated by ADI parameters {p1, . . . , pl}
obtained by a new suboptimal choice proposed in the last section.

The error bound contains two parts: the first belongs to the approximation of
the solution X of Lyapunov equation (3.1) with its lth approximation Xl obtained
by Algorithm 1 (Algorithm 2) with the set of ADI parameters which corresponds to
a certain subset of the spectrum of the matrix A. This bound was presented in [16,
Theorem 2.1].

The second part of the bound belongs to the approximation of a suboptimal set
of ADI shifts (“exact eigenvalues” of the matrix A) with some approximative values.
This approximation has to be done since the location of eigenvalues which represent
a suboptimal set of ADI shifts is still an open problem.

Thus, let the matrix X̃l be the approximation of the solution Xl by Algorithm
1 (Algorithm 2) with the set of ADI parameters {p1, . . . , pl} obtained by our new
suboptimal choice.

Thus, we can write

|Tr(X)− Tr(X̃l)| ≤ |Tr(X)− Tr(Xl)|+ |Tr(Xl)− Tr(X̃l)|.(4.1)

As pointed out above, the bound for |Tr(X) − Tr(Xl)| will be taken from [16,
Theorem 2.1], assuming that A is diagonalizable with eigendecomposition:

A = SΛS−1 .

Let Xl be the lth approximation obtained by Algorithm 1 (Algorithm 2) with
the set of ADI parameters which correspond to any subset of exact eigenvalues of the
matrix A (i.e., λki ∈ σ(A) for i = 1, . . . , l). Then the following bound holds [16,
Theorem 2.1]:

(4.2) |Tr(X)− Tr(Xl)| ≤ ‖S‖2
m∑

j=l+1

(−2Re(λkj ))
m∑
k=1

|σ(j, k)|2 · ‖ĝk‖2,
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where

(4.3) σ(1, k) =
1

λk + λk1
and σ(j, k) =

1
λk + λk1

j∏
t=2

λk − λkt−1

λk + λkt

for j > 1,

and

(4.4) Ĝ = S−1G =

⎡⎢⎢⎢⎣
g11 g12 . . . g1s
g21 g22 . . . g2s
...

...
...

...
gm1 gm2 . . . gms

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ĝ1
ĝ2
...
ĝm

⎤⎥⎥⎥⎦ ;

that is, ĝi denotes the ith row of the matrix Ĝ.
As shown in [16], the right-hand side of (4.2) strongly depends on the magnitude

of ‖ĝk‖2F , k = 1, . . . , k0 (the structure of the matrix Ĝ is important). For example, if

(4.5) ‖ĝ1‖ ≥ · · · ≥ ‖ĝl‖ � ‖ĝl+1‖F ≈ · · · ≈ ‖ĝm‖F ≈
√
ε,

then we can choose λk1 , . . . , λkl
such that σ(j, 1) = · · · = σ(j, l) = 0 for j ≥ 2. This is

fulfilled for ki = i. If ‖S‖, Re(λj), and the rest of σ(j, k)’s have modest magnitudes,
then from (4.2) we have

|Tr(X)− Tr(Xl)| ≤ O(ε) .

With this assumption we will continue with bounding the second part of the right-
hand side of (4.1). Without loss off generality, we will assume that the matrix G from
(3.1) has the form G = [Is, 0]T , where Is is an identity matrix of dimension s, that is,

GGT =
[
Is 0
0 0

]
.(4.6)

It is important to note that in the case when G has the form defined as in (4.6),
our choice of ADI parameters is given as the set of eigenvalues of the matrix Ablock,
where Ablock = (A0)11 − v d1 dT1 and where, after perfect shuffle permutation, A has
the following form:

A ≡
[
(A0)11 − v d1 dT1 −vd1 dT2
−v d2 dT1 (A0)22 − v d2 dT2

]
, where D0 =

[
d1

d2

]
.

Usually, the dimension l of the matrix Ablock is taken as 3s ≤ l ≤ 5s.
Note that we can write

Ã = A−ΔA ≡
[
(A0)11 − v d1 dT1 0

0 (A0)22 − v d2 dT2

]
,

where

ΔA = v ·
[

0 d1 dT2
d2 dT1 0

]
,

which means that our ADI shifts are exact eigenvalues of the matrix Ã.
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Recall that Xl is the lth approximation of the solution of the Lyapunov equation
(3.1) obtained by Algorithm 1 (Algorithm 2) generated by the set {λ1, λ2, . . . , λl},
where λi ∈ σ(A) for i = 1, . . . , l, while X̃l is the lth approximation of the solution
of the Lyapunov equation (3.1) obtained by Algorithm 1 (Algorithm 2) generated by
the set of ADI parameters obtained by our new suboptimal choice of ADI parameters,
that is, with pi ∈ σ(Ablock) ⊂ σ(Ã).

Our choice of ADI parameters can be written as

pi ≡ λ̃i = λi ± δλi , i = 1, . . . , l.(4.7)

Further, Xl and X̃l can be written as

Xl =
l∑

j=1

‖Wj‖2F , X̃l =
l∑

j=1

‖W̃j‖2F ,

where Wj and W̃j are matrices obtained by Algorithm 1 (Algorithm 2).
Then, if we write

W̃j = Wj + δWj ,

it is easy to show that the following first order bound holds:

Tr(Xl)− Tr(X̃l) ≤ 2
l∑

j=1

‖Wj‖F ‖δWj‖F +O(‖δWj‖F 2) .(4.8)

We will continue with bounding ‖δWj‖F .
Let Wj be the jth matrix obtained by Algorithm 1 (Algorithm 2) with ADI

parameters {λ1, . . . , λl}, with input matrices A and G, where G is defined as in
(4.6). In [16] it has been shown that Wj can be written as

Wj =
√
−2 Re(λj)S · diag (σ(j, 1), σ(j, 2), . . . , σ(j,m)) S−1G,(4.9)

where σ(j, k) are given by

σ(1, k) =
1

λk + λ1

and σ(j, k) =
1

λk + λj

j−1∏
t=1

λk − λt
λk + λt+1

for j > 1.

Indeed, from Algorithm 1 (Algorithm 2) (for more details see the proof of Theorem
2.1 in [16]), it follows that

Wj =
√
−2 Re(λj)S ·

(
I− (λj + λj−1)(Λ + λjI)−1

)
· (I− (λj−1 + λj−2)(Λ + λj−1I)−1

) · · · (I− (λ2 + λ1)(Λ + λ2I)−1
)

· (Λ + λ1I)−1S−1G ,

which together with the fact that in the above equality we have a j − 1 diagonal
matrix of the form(

I− (λk + λk−1)(Λ + λkI)−1
)

= diag
(
λi − λk−1

λi + λk

)
i

,

i = 1, . . . ,m, k = 2, . . . , j, gives (4.9).
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Here it is important to note that all eigenvalues of the matrix A from (3.2) are
given in complex conjugate pairs. Thus, if we choose ADI parameters as the first l
exact eigenvalues of A, then the structure of σ(j, k) implies

σ(j, k) = 0 for j = 1, . . . , l, j > k.

Similarly, let W̃j be the jth matrix obtained by Algorithm 1 (Algorithm 2) with
ADI parameters {p1, . . . , pl}, with the same input matrices A and G, where pi is
defined by (4.7):

W̃j =
√
−2 Re(λj ± δλj)S · diag (σ̃(j, 1), σ̃(j, 2), . . . , σ̃(j,m)) S−1G,(4.10)

where σ̃(j, k) are given by

σ̃(1, k) =
1

λk + λ1 ± δλ1

and

σ̃(j, k) =
1

λk + λj ± δλj

j−1∏
t=1

λk − λt ∓ δλt
λk + λt+1 ± δλt+1

for j > 1 .

Now it is easy to see that from (4.9) and (4.10) it follows that

δWj = S · diag (δζ(j, 1) . . . , δζ(j, k), . . . , δζ(j,m)) S−1G,

where

δζ(j, k) =
√
−2 Re(λj ± δλj) · σ̃(j, k) −

√
−2 Re(λj) · σ(j, k).(4.11)

Now δWj can be written as

(4.12) δWj = S

⎡⎢⎢⎢⎣
δζ(j, 1) ĝ1
δζ(j, 2) ĝ2

...
δζ(j,m) ĝm

⎤⎥⎥⎥⎦ .
Recall that we have assumed that Ĝ satisfy (4.5) and that all Re(λj), σ(j, k)’s for
k ≥ l have modest magnitudes such that

(4.13) |σ(j, k)| · ‖ĝk‖ = O(
√
ε), k ≥ l,

and
√−2 Re(λj)O(ε) = O(ε). Then, as we have already pointed out, there holds

|Tr(X)− Tr(Xl)| ≤ O(ε).
Thus, if

(4.14) |ηj | ≡
∣∣∣∣δλjλj

∣∣∣∣ < 1,

then we have the first order approximation√
−2 Re(λj ± δλj) =

√
−2 Re(λj) ·

(
1± |ηj |

2

)
+O(|ηj |2),
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which implies

δζ(j, k) ≈
√
−2 Re(λj) · (σ̃(j, k)− σ(j, k)) ∓ ηj

2
·
√
−2 Re(λj) · σ̃(j, k) .

Thus, the above consideration implies that we have to bound more carefully the
first l components of the matrix δWj from (4.4) than the rest of the components.
That is, we are going to bound |δζ(j, i)| for j = 1, . . . , l.

For 1 < j and k ≤ l we have

σ̃(j, k) =
1

λk + λ1 ± δλ1

j−1∏
t = 1
t �= k

λk − λt ∓ δλt
λk + λt+1 ± δλt+1

· λk ηk

λk + λk+1 ± δλk+1

,

which can be written as

σ̃(j, k) = δσ(j, k) · ηk, where

δσ(j, k) =
1

λk + λ1 ± δλ1

j−1∏
t = 1
t �= k

λk − λt ∓ δλt
λk + λt+1 ± δλt+1

· λk

λk + λk+1 ± δλk+1

,

Further, let δWj(k, :) be the kth row of the matrix δWj defined by (4.12). As-
sumption (4.5) implies that the entries in δWj(k, :) will be small in magnitude for
k > l. Thus for k > l the following simple bound is quite satisfactory to us:

|δζ(j, k)| �
√
−2 Re(λj) · |σ(j, k) + σ̃(j, k)|+ |ηj |

2
·
√
−2 Re(λj) · |σ̃(j, k)| .

Finally, we can bound the right-hand side in (4.8). Indeed,

|Tr(Xl)− Tr(X̃l)| � 2
l∑

j=1

‖Wj‖F ‖δWj‖F ,(4.15)

where

‖δWj‖F ≤ ‖S‖
m∑
k=1

|δζ(j, k)| · ‖ĝk‖,

with

|δζ(j, k)| �
√
−2 Re(λj) ·

(
|δσ(j, k)| · |ηk|+ |ηj |2

· |σ̃(j, k)|
)
, k ≤ l,(4.16)

and

|δζ(j, k)| �
√
−2 Re(λj) ·

(
|σ(j, k)|+ |σ̃(j, k)|+ |ηj |

2
· |σ̃(j, k)|

)
, k > l.(4.17)

Now, from (4.2) and (4.15) it follows that

|Tr(X)− Tr(X̃l)| ≤ ‖S‖2
m∑

j=l+1

(−2Re(λkj ))
m∑
k=1

|σ(j, k)|2 · ‖ĝk‖2(4.18)

+ 2 ‖S‖
l∑

j=1

‖Wj‖F
(

m∑
k=1

|δζ(j, k)| · ‖ĝk‖
)
,

where all quantities used in the above bound are defined in the above consideration.
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From (4.16) and (4.17) it follows that an important part in our bound is played
by the perturbation of eigenvalues. Since we have assumed that all eigenvalues of the
matrix A are simple, the following (see [3] or [13]) holds:

(4.19) |δλk| ≤ t∗kΔAsk
t∗ksk

= εk,

where sk and tk are right and left eigenvectors belonging to λk normalized so that
‖sk‖ = ‖tk‖ = 1 and |t∗ksk| = t∗ksk. Now from (4.19) and (4.14) it follows that

|ηk| ≤ t∗kΔAsk
|λk| t∗ksk

.

As the last issue in this section, we are going to discuss how realistic is our
assumption (4.5). It is obvious that assumption (4.5) will be fulfilled if R(G) is close
to column space R(S).

We are going to derive a bound for viscosity v, from which will be possible to
conclude when our assumption,

‖ĝj‖ ≈
√
ε for j = l + 1, . . . ,m,

will be feasible.
Recall that we have denoted

Ĝ = S−1G =
[
ĝ1, . . . , ĝl, ĝl+1, . . . ĝm

]T
.

Note that for (4.6) Ĝ contains only the first s columns of the matrix T∗ = S−1.
Further, let Ã = S̃Λ̃S̃−1 be the eigenvalue decomposition of the matrix Ã. Note
that since Ã is block diagonal, S̃ will be block diagonal, too. Thus for v of modest
magnitude one can expect that T∗ will have an almost block diagonal structure.

If we write

ES = S−1S̃,

using Ĝ = T∗S̃S̃−1G ≡ EST̃∗
(1:s,:) we can bound Ĝ2 ≡

[
ĝl+1, . . . , ĝm

]T in the follow-
ing way:

‖Ĝ2‖ ≤ ‖(ES)21‖ ‖T̃∗
(1:s,:)‖,

where (ES)21 denotes an off-diagonal block which contains rows from l + 1 up to m
and the first s columns of ES .

Now using the simple equality

ΛES −ESΛ̃ = −S−1ΔAS̃,

one can easily see that

|(ES)21|ij =
T∗

(:, i)ΔAS̃(:, j)

|λi − λ̃j |
= v ·

T∗
(:, i)d2dT1 S̃(:, j)

|λi − λ̃j |
≡ v · Ψij

|λi − λ̃j |
, where

λi ∈ Λ(l + 1 : m, l+ 1 : m) , λ̃j ∈ Λ̃(1 : s, 1 : s).
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Altogether this implies

‖Ĝ2‖F ≤ v ·
‖Ψ‖F ‖T̃∗

(1:s,:)‖
gap(Λ̃(1 : s, 1 : s),Λ(l + 1 : m, l + 1 : m))

,(4.20)

gap(Λ̃(1 : s, 1 : s),Λ(l + 1 : m, l+ 1 : m)) = min
i,j
|λi − λ̃j |, where

λi ∈ Λ(l + 1 : m, l + 1 : m) , λ̃j ∈ Λ̃(1 : s, 1 : s) .

Note that since l > s, the gap function can be large in magnitude; thus if
‖T̃∗

(1:s,:)‖ has a modest magnitude, then for l > 4 s from (4.20) it follows that if

v �
√
ε · gap(Λ̃(1 : s, 1 : s),Λ(l + 1 : m, l+ 1 : m))

‖Ψ‖F ‖T̃∗
(1:s,:)‖

,

our assumption (4.5) will be fulfilled, which means that ‖ĝk‖ ≈ √ε for k = l +
1, . . . ,m.

5. Numerical illustration. The first example in this section illustrates the
efficiency and accuracy of the new algorithm in respect to the column rank of the
right-hand side of the Lyapunov equation (3.1).

Example 1. We consider the Lyapunov equation

AX + XAT = −GGT ,

where

A = A0 − vD =
[

0 Ω
−Ω 0

]
− v

[
0 0
0 C0C

T
0

]
,

where C0 = rand(n, r) and r = 4. The matrix A is m×m, with m = 400 (note that
n = 200). The matrix G we construct as

G = 0.001 · rand(m, 2 s), G(1 : s, 1 : s) = rand(s),
G(n+ 1 : n+ s, s+ 1 : 2 s) = rand(s).

where rank(G) = 2s.
The ADI shifts will be chosen as the eigenvalues of the matrix Ap(1 : lp, 1 : lp),

where Ap is obtained from A using the perfect shuffle permutation.
We are going to compute a relative error relerr and the number of floating point

operations flops obtained by the new algorithm, Algorithm 2, for the different s—the
rank of the matrix G.

The relative error is defined as

relerr =
|TrX − TrnewX |

TrX
,

where TrX is the trace of the solution of the Lyapunov equation (3.1) obtained by
MATLAB function Lyap (which is based on the Bartels–Stewart method), while
TrnewX is the trace of the solution obtained by the new algorithm, Algorithm 2.
Further, the number of floating point operations flops is defined by

flops = lp ·
(
s r (O(m) +O(r) ) + s(O(mr) +O(m) ) +O(r3)

)
+O(l3p),

which has been obtained using (3.9) with additional O(l3p) flops, which corresponds
to the number of calculations needed for the lp suboptimal ADI shifts.
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s 10 10 10 10
lp 20 40 60 200

relerr 0.0016 3.2430e-004 2.1210e-004 3.3638e-005
flops O(105) O(106) O(106) O(107)
s 30 30 30 30
lp 60 80 100 200

relerr 0.0015 6.2926e-004 4.0017e-004 1.1102e-004
flops O(106) O(106) O(107) O(107)
s 50 50 50 50
lp 50 100 140 200

relerr 0.5525 0.0016 5.2693e-004 2.3062e-004
flops O(106) O(107) O(107) O(107)

As one can see from the above table, the accuracy and efficiency of the new
algorithm, Algorithm 2, strongly depends on s—the number of damped modes. If we
are interested in a result of a certain accuracy, then as s grows, the required number
of ADI parameters grows, too, which slows performance of the new algorithm.

Further, we will compare different algorithms for dampers’ viscosity optimization
considering a simple mechanical system consisting of three rows of n masses connected
with n+ 1 springs on the left-hand side on the fixed base and on the right-hand side
on the mass m0 connected to the fixed base with the spring with stiffness k0 (see
Figure 5.1).

Fig. 5.1. (3n + 1)-mass oscillator with three dampers.

Example 2. Consider a damped linear vibrational mechanical system consisting
of three rows of n masses connected with n + 1 springs on the left-hand side on the
fixed base and on the right-hand side on the mass m0 connected to the fixed base
with the spring with stiffness k0 (see Figure 5.1). Then one can write

Mẍ+Dẋ+Kx = 0,

where M , D, and K are defined as

(5.1) M = diag(m1, . . . ,m1,m2, . . . ,m2,m3, . . . ,m3,m0) ,
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(5.2)

K =

⎡⎢⎢⎣
K11 −κ1

K22 −κ2

K33 −κ3

−κT1 −κT2 −κT3 k1+k2+k3+k0

⎤⎥⎥⎦ , Kii = ki

⎡⎢⎢⎢⎢⎢⎣
2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

⎤⎥⎥⎥⎥⎥⎦ ,

and κi =
[
0 . . . 0 ki

]T , Kii ∈ Rn×n and κi ∈ Rn×1, for i = 1, 2, 3,

D ≡ Cu + C = Cu + ve1e
T
1 + vene

T
n + ve2n+1e

T
2n+1.

Note that M , D, and K are matrices of order 3n+ 1× 3n+ 1. We will set n = 40.
Let m2 = k2 = 2 and m3 = k3 = 4 be fixed, and let m0,m1, k0, k1 be chosen such

that

m0, k0 ∈ {10−3, 10−2, 10−1, 1, 10, 102} and m1, k1 ∈ {10−2, 10−1, 1, 10, 102, 103} .
This means that we have 1296 different configurations defined by different sets

{m0,m1,m2,m3} and {k0, k1, k2, k3}. For each of these configurations we have derived
the optimal trace of the solution of the corresponding Lyapunov equation (3.1), where
G is defined by (3.4) and G(1 : s, 1 : s) = Is, G(n + 1 : n + s, s + 1 : 2 s) = Is with
s = 20 and the optimal viscosity. We have used the following four algorithms:

1. Minimization process based on Newton iteration process for higher-dimensional
problems which use the Bartels–Stewart Lyapunov solver [1]. For the starting
point we have used the one proposed in [2] (New.-Bart.-Stew.).

2. Minimization process based on Newton iteration process for one-dimensional
problems which use a new Lyapunov solver proposed in [15]. For the starting
point we have used v0 = 0.01 (New.-new).

3. Minimization process with the standard MATLAB function fminbnd (using
the Golden section search and parabolic interpolation) based on LRCF-ADI
Lyapunov solver Algorithm 2 generated by the set of ADI parameters pro-
posed by Penzl in [12] (LRCF-ADI-Penzl). Minimization has been performed
on the interval [0, 5000].

4. Minimization process with the standard MATLAB function fminbnd (using
the Golden section search and parabolic interpolation) based on LRCF-ADI
Lyapunov solver Algorithm 2 generated by the new set of ADI parameters
proposed in [16] (LRCF-ADI, new). Minimization has been performed on
the interval [0, 500].

Before we continue with the analysis of all 1296 configurations, we will illustrate
the quality of error bound (4.18) on one particular configuration. The chosen configu-
ration has some interesting properties (later the same configuration will be considered
as the case of a nonconvex energy curve), and it is far away from the best possible
case for our error analysis.

Let

m0 = 100, m1 = 0.01, m2 = 2, m4 = 4;
k0 = 100, k1 = 0.01, k2 = 2, k4 = 4 .

Let v = 4, s = 20 and let l = 60 be the number of ADI shifts generated by a new
algorithm proposed in section 3. Simple calculation gives that the first part in the
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bound (4.18) is bounded with 0.7876, while the second part is bounded with 100.7001.
Altogether this gives

|Tr(X)− Tr(X̃l)|
Tr(X)

≤ 0.0205 .

At the same time real relative error for the lth approximation of the trace is

|Tr(X)− Tr(X̃l)|
Tr(X)

≤ 2.55 · 10−4 .

It has to be pointed out that for the considered configuration a relative error in
eigenvalues satisfies

max
1≤k≤m

|ηk| ≤ max
1≤k≤m

t∗kΔAsk
|λk| t∗ksk

≤ 0.76,

while for the norms of the rows of the matrix Ĝ = S−1G it holds that

10−7 ≤ |ĝk| ≤ 0.77 , l + 1 ≤ k ≤ m.
The above example shows that, although we do not have a very accurate approxi-

mation for all eigenvalues and eigenvectors (which was expected), we still have 4 exact
digits in our approximation of the trace, while our bound predicts 2 exact digits.

We continue with the analysis of all 1296 configurations. Table 5.1 contains the
ratios between optimal traces obtained by algorithms LRCF-ADI-Penzl and LRCF-
ADI-new (3 and 4) and algorithms New.-new and New.-Bart.-Stew. (2 and 1).

Table 5.1

LRCF-ADI-Penzl/New.-new LRCF-ADI-new/New.-new
> 1.02 15.7 % 5.2 %
< 0.98 2.7 % 2.7 %

LRCF-ADI-Penzl/New.-Bart.-Stew. LRCF-ADI-new/New.-Bart.-Stew.
> 1.05 42 % 37 %

< 1 0.75 % 6 %

As one can see from Table 5.1 in 5.2% of our experiments the optimal trace
obtained by the algorithm LRCF-ADI-new is more than 2% larger than the optimal
trace obtained by New.-new, while in 15.7% of our experiments the optimal trace
obtained by LRCF-ADI-Penzl is more than 2% larger than the optimal trace obtained
by New.-new. At the same time, in 2.7% of our experiments, both algorithms (LRCF-
ADI-new and LRCF-ADI-Penzl) obtain at least 2% a larger optimal trace than the
optimal trace obtained by LRCF-ADI-new.

Since the discrepancies in both cases were not expected, we will carefully consider
the cases in which they appear. It turns out that by the algorithm LRCF-ADI-
new in 5.2% of our experiments we have obtained a larger trace in comparison to
the algorithm New.-new, whereas in 15.7% we have obtained a larger trace by the
algorithm LRCF-ADI-Penzl in comparison to the algorithm New.-new. This has
been caused by using the wrong intervals: [0, 500] for LRCF-ADI-new and [0, 5000]
for LRCF-ADI-Penzl, respectively. For example, in the abovementioned situations,
the algorithm LRCF-ADI-new has obtained the optimal trace for optimal viscosity
v = 500, which is obviously wrong. On the other hand, in 2.7% of our experiments
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the optimal trace obtained by the algorithms LRCF-ADI-new and LRCF-ADI-Penzl
is smaller than the optimal trace obtained by algorithm New.-new. The reason for
this is a wrong starting point v0 = 0.01 for Newton iterations.

For illustration consider the case with

m0 = 100, m1 = 0.01, m2 = 2, m4 = 4;
k0 = 100, k1 = 0.01, k2 = 2, k4 = 4.

Figure 5.2 shows the trace as the function of viscosity v. It is obvious that starting
point v0 = 0.01 will lead to a wrong result. But if we take for the starting point any
point 6 < v0 < 10, optimal viscosity is v = 14.765.

v
. .....

Fig. 5.2. The graph of the trace function.

Similar conclusions hold for the ratio between optimal traces obtained by al-
gorithms LRCF-ADI-new and LRCF-ADI-Penzl and the optimal trace obtained by
multidimensional optimization using New.-Bart.-Stew.

As expected (with a usage of correct intervals on which we perform minimization)
in 30% of our experiments, the optimal trace obtained by New.-Bart.-Stew. is more
than 5% smaller than the optimal trace obtained by algorithm LRCF-ADI-new, while
in 35% of our experiments, the optimal trace obtained by New.-Bart.-Stew. is more
than 5% smaller than optimal trace obtained by algorithm LRCF-ADI-Penzl. But in
6% of our experiments, the optimal trace obtained by algorithm LRCF-ADI-new is
smaller than the optimal trace obtained by New.-Bart.-Stew., which was definitively
unexpected. The reason for this lies in the fact that in these particular situations
the starting point for New.-Bart.-Stew., obtained by the algorithm proposed in [2], is
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wrong. For illustration we consider the case with

m0 = 100, m1 = 0.01, m2 = 2, m4 = 4;
k0 = 100, k1 = 10, k2 = 2, k4 = 4.

The starting point for optimization process New.-Bart.-Stew. obtained by routine
calcvisc taken from [2] gives visc =

[
0.0147, 2.7535, 5.5009

]
, which corresponds to

Tr(ZXopt) = 4965.4, at the same time the optimal trace for vopt = 16.41 (obtained
by algorithm LRCF-ADI-new) is Tr(ZX) = 4062.6. But if we change a starting point
to visc2 =

[
16.4, 16.4, 16.4

]
, then the algorithm New.-Bart.-Stew. gives optimal trace

Tr(ZXopt) = 3997.1 for viscosity viscopt =
[
20.6384, 11.5852, 23.183

]
.

Considering the abovementioned, we can conclude that both algorithms based on
the LRCF-ADI Lyapunov solver combined with some nonsmooth optimization give
us very satisfactory results.

At the same time, the number of operations needed for one optimization with
algorithm LRCF-ADI-new is much smaller than the number needed for optimization
with algorithm New.-new. For illustration, to obtain optimal viscosity with algo-
rithm LRCF-ADI-new one usually needs ∼ 20 iterations, which together with (3.9)
gives 20 · (280O(m)+ 10/3(3s)3) operations, where the second number in the bracket
10/3(3s)3 stands for the number of operations needed for calculating the ADI param-
eters (eigenvalues of a 3s × 3s nonsymmetric matrix (see [6])). On the other hand,
as shown in [15], the algorithm New.-new needs 14/3 (2rm)3 +O(r2m2) operations,
which is obviously much more.
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Abstract. We present eigenvalue bounds for perturbations of Hermitian matrices and express
the change in eigenvalues in terms of a projection of the perturbation onto a particular eigenspace,
rather than in terms of the full perturbation. The perturbations we consider are Hermitian of
rank one, and Hermitian or non-Hermitian with norm smaller than the spectral gap of a specific
eigenvalue. Applications include principal component analysis under a spiked covariance model, and
pseudo-arclength continuation methods for the solution of nonlinear systems.
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1. Introduction. We present perturbation bounds for eigenvalues of Hermitian
matrices that were motivated by two applications: principal component analysis under
a spiked covariance model [25], and pseudo-arclength continuation methods for the
solution of systems of nonlinear equations [7].

Although these applications are very different, they share a common requirement:
The change in the eigenvalues of interest should be determined not by the global
norm of the full perturbation, which can be quite large, but rather by the norm of a
projection of the perturbation on a particular eigenspace. In contrast, most existing
eigenvalue bounds are expressed either in terms of the full perturbation or else in terms
of a residual, and therefore do not provide sufficient information for our applications.

The paper is organized as follows. We start with the most specific class of per-
turbations, Hermitian rank one updates, and then generalize the perturbations first
to Hermitian and then to non-Hermitian matrices. In section 2 we present bounds for
Hermitian rank one updates, and explain why such bounds can be useful in pseudo-
arclength continuation methods. In section 3 we consider Hermitian perturbations
whose norm is smaller than the spectral gap of a specific eigenvalue, and we describe
their use in principal component analysis. In section 4 we extend the bounds to
non-Hermitian perturbations.

Notation. The identity matrix of order k is Ik =
(
e1 . . . ek

)
. The norm

‖ · ‖ denotes the two norm. The eigenvalues of a Hermitian matrix A ∈ C
n×n are

numbered so that

λmin(A) ≡ λn(A) ≤ · · · ≤ λmax(A) ≡ λ1(A).
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The conjugate transpose of a matrix A is denoted by A∗; an overbar, as in A, denotes
elementwise complex conjugation.

We will use two measures for the separation between adjacent eigenvalues of a
Hermitian matrix A ∈ C

n×n: the distance of an eigenvalue λi(A) to its right neighbor,

gapi ≡ λi−1(A)− λi(A), 2 ≤ i ≤ n,

and the minimum of the distance to left and right neighbors,

Gapi ≡ min
j �=i
|λi(A)− λj(A)|.

The two measures are related,

Gapn = gapn, Gap1 = gap2, Gapi = min{gapi, gapi+1}, 1 < i < n.

2. Hermitian rank one updates. We present improved perturbation bounds
for eigenvalues of Hermitian matrices when the perturbation is Hermitian of rank one.

Before describing an application that requires such bounds, we mention that
algorithms for computing eigenvalues and eigenvectors of Hermitian matrices modified
by a rank one matrix are well established [3, 10, 14], [11, section 8.5.3, section 12.5.1];
the corresponding inverse eigenvalue problem has also been investigated [21].

2.1. Numerical continuation. Numerical continuation is the process of solving
systems of nonlinear equations G(u, λ) = 0 for various values of the real parameter λ.
Here G : R

N+1 → R
N is assumed to be sufficiently smooth [12, 20, 22, 29].

Parameter continuation is a method for tracing out a solution path by repeatedly
incrementing λ until the desired value of λ is reached. In each iteration, the current
solution u serves as an initial iterate for, say, Newton’s method to compute a solution
for the next value of λ. Although parameter continuation is simple and intuitive, it
fails at points (u, λ) where the Jacobian Gu is singular.

One can try to circumvent singularities by reparameterizing the problem and in-
troducing the arclength parameter s. Now both u and λ depend on s, and the original
parameter λ is treated as an unknown. The resulting pseudo-arclength continuation
method [12, 20, 22, 29] implements parameter continuation on F (u(s), λ(s)) = 0 with
s as the parameter and solves

F (x, s) =

(
G(x)
N (x, s)

)
= 0, x =

(
u(s)
λ(s)

)
,

where N represents a normalization equation. Pseudo-arclength continuation requires
that the Jacobian

Fx =

(
Gu Gλ

Nu Nλ

)
be nonsingular. The normalization equation is set up so that at a point where
G(u0, λ0) = 0 the row

(Nu Nλ

)
has unit norm and is almost orthogonal to the

rows of
(
Gu Gλ

)
. Hence Fx is nonsingular at (u0, λ0) if the rank of

(
Gu Gλ

)
equals N . In other words, Fx is nonsingular if Gu is nonsingular, or if the nullspace of
Gu has dimension 1 and Gλ is not in the range of Gu [20, 29]. The latter singularity
is called a limit point, fold point, simple fold, or turning point [4, 5, 23, 27, 29].
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Denote the partial derivatives at (u0, λ0) by Gu = Gu(u0, λ0) and y = Gλ(u0, λ0).
Instead of the singular values of the Jacobian Fx we consider the eigenvalues of

FxF
∗
x =

(
A + yy∗ 0

0 1

)
+ E ,

where A = GuG
∗
u, and we have used the fact that the last row of Fx has unit norm

and is almost orthogonal to the others, so that ‖E‖ is small. To estimate the condition
number of Fx and the convergence rate of a Newton-GMRES method, it suffices to
bound ‖F−1

x ‖ by determining a nontrivial lower bound for the smallest eigenvalue
λmin(A + yy∗) [7]. For this positive semidefinite rank one update, Weyl’s theorem
implies [11, Theorem 8.1.8], [26, Corollary 10.3.1]

λmin(A) ≤ λmin(A + yy∗).

When A is nonsingular, this bound is adequate for our purposes. However, it is useless
at a fold point, because there A is singular and 0 = λmin(A) = 0 < λmin(A + yy∗).
We need a lower bound for λmin(A) that takes into account that y is not in the range
of A and has a nonzero contribution in the eigenspace of λmin(A).

Our objective is to tighten our previous bound [7, Theorem 3.3] and the bounds
in [13]. This is accomplished in Theorem 2.1 below. The results in section 2.2 may
also be of benefit in the construction of nonsingular bordered matrices.

2.2. Smallest eigenvalue. For a given Hermitian matrix A ∈ C
n×n and a

column vector y ∈ C
n, we improve the inclusion interval from Weyl’s theorem for the

smallest eigenvalue of Hermitian rank one updates A± yy∗,

λmin(A) ≤λmin(A + yy∗) ≤ λn−1(A),(2.1)

λmin(A)− ‖y‖2 ≤λmin(A− yy∗) ≤ λmin(A),(2.2)

by taking into account the contribution of y in the eigenspace of λmin(A).
Let A = V ΛV ∗ be an eigenvalue decomposition, where V =

(
v1 . . . vn

)
is

unitary and

Λ =

⎛⎜⎝λ1(A)
. . .

λn(A)

⎞⎟⎠ , λmax(A) = λ1(A) ≥ · · · ≥ λn(A) = λmin(A).

Define the projections of the vector y onto the eigenvectors of A,

yi:j ≡
(
vi . . . vj

)∗
y, 1 ≤ i ≤ j ≤ n.

Below we bound the smallest eigenvalues of the rank one updates in terms of eigen-
values of 2× 2 matrices (which can be considered as rank one updates of projections
onto two-dimensional subspaces). Explicit expressions for these eigenvalues are given
in Corollary 2.2. A simpler upper bound in Corollary 2.3 emphasizes the influence of
yn and the separation of λmin(A) from the next eigenvalue.

Theorem 2.1 (smallest eigenvalue). Let A ∈ C
n×n be Hermitian, y ∈ C

n, and

L± ≡
(
λn−1(A) 0

0 λn(A)

)
±
(‖y1:n−1‖

yn

)(‖y1:n−1‖ yn
)
,

U± ≡
(
λn−1(A) 0

0 λn(A)

)
±
(
yn−1

yn

)(
yn−1 yn

)
.
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Then λmin(L±) ≤ λmin(A± yy∗) ≤ λmin(U±), where

λmin(A) ≤ λmin(L+) ≤ λmin(U+) ≤ λn−1(A),

λmin(A)− ‖y‖2 ≤ λmin(L−) ≤ λmin(U−) ≤ λmin(A).

Proof. Abbreviate αj ≡ λj(A), 1 ≤ j ≤ n, and partition the eigenvalue decompo-
sition of A so as to distinguish the smallest eigenvalue αn = λmin(A).

Λ =

(
Λ1

αn

)
, Λ1 ≡

⎛⎜⎝α1

. . .

αn−1

⎞⎟⎠ ,

and V =
(
V1 vn

)
with V1 ≡

(
v1 . . . vn−1

)
. We derive the bounds by “projecting”

A onto a 2× 2 matrix with eigenvalues αn and αn−1.
Lower bounds. We start with the positive semidefinite update. Let z be a unit-

norm eigenvector associated with λmin(A + yy∗), i.e., (A + yy∗)z = λmin(A + yy∗)z,
‖z‖ = 1. Express z in the V -basis,(

z1:n−1

zn

)
=

(
V ∗

1 z
v∗nz

)
= V ∗z.

Then

λmin(A + yy∗) = z∗(A + yy∗)z = z∗1:n−1Λ1z1:n−1 + αn|zn|2 + |y∗z|2
≥ αn−1‖z1:n−1‖2 + αn|zn|2 + |z∗1:n−1y1:n−1 + znyn|2

=
(
z∗1:n−1 zn

) [(αn−1In−1 0
0 αn

)
+

(
y1:n−1

yn

)(
y∗1:n−1 yn

)](z1:n−1

zn

)
.

Let Q be a unitary matrix of order n − 1 so that Qy1:n−1 = ‖y1:n−1‖en−1 and set
w ≡ (Qz1:n−1

zn

)
, where ‖w‖ = 1. Then

λmin(A + yy∗) ≥ w∗
((

αn−1In−1 0
0 αn

)
+

(‖y1:n−1‖en−1

yn

)(‖y1:n−1‖e∗n−1 yn
))

w

≥ λmin

(
αn−1In−2 0

0 L+

)
= min{αn−1, λmin(L+)}.

Applying (2.1) to L+ gives αn ≤ λmin(L+) ≤ αn−1, and

λmin(A + yy∗) ≥ min{αn−1, λmin(L+)} = λmin(L+).

Now consider the negative semidefinite update, and let z be a unit-norm eigen-
vector associated with λmin(A− yy∗), i.e., (A− yy∗)z = λmin(A− yy∗)z, ‖z‖ = 1. As
above one shows λmin(A− yy∗) ≥ min{αn−1, λmin(L−)}. Applying (2.2) to L− gives
αn − ‖y‖2 ≤ λmin(L−) ≤ αn, and

λmin(A− yy∗) ≥ min{αn−1, λmin(L−)} = λmin(L−).

Upper bounds. Since U± are the respective trailing 2 × 2 principal submatrices
of V ∗(A ± yy∗)V , Cauchy’s interlace theorem [26, section 10.1] implies λmin(A ±
yy∗) ≤ λmin(U±). Applying (2.1) to U+ and (2.2) to U− gives λmin(U+) ≤ αn−1 and
λmin(U−) ≤ αn.
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Below we give explicit expressions for the bounds in Theorem 2.1 in terms of the
absolute gap between the two smallest eigenvalues,

gapn ≡ λn−1(A)− λn(A) ≥ 0.

Corollary 2.2 (smallest eigenvalue). In Theorem 2.1

λmin(L±) = λmin(A) +
1

2

(
gapn ± ‖y‖2 −

√
(gapn ± ‖y‖2)2 ∓ 4gapn|yn|2

)
and

λmin(U±) = λmin(A)+
1

2

(
gapn ± ‖yn−1:n‖2 −

√
(gapn ± ‖yn−1:n‖2)2 ∓ 4gapn|yn|2

)
.

Implications for numerical continuation. For the application to pseudo-
arclength continuation in section 2.1, it is important to know how |yn| and gapn

influence λmin(A + yy∗), provided λmin(A) < λn−1(A), yn 	= 0, and yn−1 	= 0. This
influence becomes clear in the next bound, which illustrates how much of the increase
in the smallest eigenvalue can be due to the contribution of y in the eigenspace of
λmin(A).

Corollary 2.3. Under the conditions of Theorem 2.1,

λmin(A + yy∗) ≤ λmin(A) + |yn|√gapn.

Proof. Abbreviate β = gapn+‖yn−1:n‖2 and γ = gapn|yn|2, and in the expression
for λmin(U+) from Corollary 2.2 write λmin(U+) = λmin(A) + δ, where

δ =
1

2

(
β −

√
β2 − 4γ

)
=

2γ

β +
√

β2 − 4γ
≤ 2

γ

β
≤ √γ = |yn|√gapn.

The last inequality follows from the fact that the term under the square root is non-
negative, i.e., β2 ≥ 4γ.

2.3. Largest eigenvalue. We improve the inclusion interval from Weyl’s theo-
rem for the largest eigenvalue of A± yy∗,

λmax(A) ≤λmax(A + yy∗) ≤ λmax(A) + ‖y‖2,
λ2(A) ≤λmax(A− yy∗) ≤ λmax(A),

by taking into account the contribution of y in the eigenspace of λmax(A).
Theorem 2.4 (largest eigenvalue). Let A ∈ C

n×n be Hermitian, y ∈ C
n, and

L± ≡
(
λ1(A) 0

0 λ2(A)

)
±
(
y1

y2

)(
y1 y2

)
,

U± ≡
(
λ1(A) 0

0 λ2(A)

)
±
(

y1

‖y2:n‖
)(

y1 ‖y2:n‖
)
.

Then λmax(L±) ≤ λmax(A± yy∗) ≤ λmax(U±), where

λmax(A) ≤ λmax(L+) ≤ λmax(U+) ≤ λmax(A) + ‖y‖2,
λ2(A) ≤ λmax(L−) ≤ λmax(U−) ≤ λmax(A).
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Proof. Use the fact that λmax(A) = −λmin(−A), and apply Theorem 2.1.
As in section 2.2, we give explicit expressions for the bounds in Theorem 2.4 in

terms of the absolute gap between the two largest eigenvalues,

gap2 ≡ λmax(A)− λ2(A) ≥ 0.

Corollary 2.5 (largest eigenvalue). In Theorem 2.4

λmax(L±) = λmax(A) +
1

2

(
−gap2 ± ‖y1:2‖2 +

√
(gap2 ± ‖y1:2‖2)2 ∓ 4gap2|y2|2

)
and

λmax(U±) = λmax(A) +
1

2

(
−gap2 ± ‖y‖2 +

√
(gap2 ± ‖y‖2)2 ∓ 4gap2‖y2:n‖2

)
.

2.4. Interior eigenvalues. We improve the inclusion intervals from Weyl’s the-
orem for the interior eigenvalues of A± yy∗,

λi(A) ≤ λi(A + yy∗) ≤ λi−1(A), 2 ≤ i ≤ n− 1,(2.3)

λi+1(A) ≤ λi(A− yy∗) ≤ λi(A),(2.4)

by using the bounds for the extreme eigenvalues in Theorems 2.1 and 2.4 on principal
submatrices.

Theorem 2.6 (interior eigenvalues). Let A ∈ C
n×n be Hermitian, y ∈ C

n, and

L
(i)
± ≡

(
λi−1(A) 0

0 λi(A)

)
±
(‖y1:i−1‖

yi

)(‖y1:i−1‖ yi
)
,

U
(i)
± ≡

(
λi(A) 0

0 λi+1(A)

)
±
(

yi
‖yi+1:n‖

)(
yi ‖yi+1:n‖

)
.

Then

λmin(L
(i)
+ ) ≤ λmin(A± yy∗) ≤ min{λmax(U

(i)
+ ), λi−1(A)}, 2 ≤ i ≤ n− 1,

where λi(A) ≤ λmin(L
(i)
+ ) ≤ λmax(U

(i)
+ ) ≤ λi(A) + ‖yi:n‖2. Moreover

max{λi+1(A), λmin(L
(i)
− )} ≤ λi(A− yy∗) ≤ λmax(U

(i)
− ), 2 ≤ i ≤ n− 1,

where λi(A)− ‖y1:i‖2 ≤ λmin(L
(i)
− ) ≤ λmax(U

(i)
− ) ≤ λi(A).

Proof. As before, abbreviate αj ≡ λj(A), 1 ≤ j ≤ n.
Lower bounds. Partition the eigenvalue decomposition so that

Λ =

(
Λ1 0
0 Λ2

)
, Λ1 ≡

⎛⎜⎝α1

. . .

αi

⎞⎟⎠ , Λ2 ≡

⎛⎜⎝αi+1

. . .

αn

⎞⎟⎠ ,

and V =
(
V1 V2

)
with V1 ≡

(
v1 . . . vi

)
and V2 ≡

(
vi+1 . . . vn

)
. Since V ∗

1 (A±
yy∗)V1 is a principal submatrix of order i of V ∗(A ± yy∗)V , the Cauchy interlace
theorem [26, section 10.1] implies

λi(A± yy∗) = λi(V
∗(A± yy∗)V ) ≥ λi(V

∗
1 (A± yy∗)V1) = λmin (Λ1 ± y1:iy

∗
1:i) .

Apply the lower bounds in Theorem 2.1. The second term in the maximum follows
from (2.4).
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Upper bounds. Partition

Λ =

(
Λ1 0
0 Λ2

)
, Λ1 ≡

⎛⎜⎝α1

. . .

αi−1

⎞⎟⎠ , Λ2 ≡

⎛⎜⎝αi

. . .

αn

⎞⎟⎠ ,

and V =
(
V1 V2

)
with V1 ≡

(
v1 . . . vi−1

)
and V2 ≡

(
vi . . . vn

)
. Since V ∗

2 (A+
yy∗)V2 is a principal submatrix of order n − (i − 1) of V ∗(A + yy∗)V , the Cauchy
interlace theorem implies

λi(A + yy∗) = λi (V
∗(A + yy∗)V ) ≤ λ1(V

∗
2 (A + yy∗)V2) = λmax (Λ2 + yi:ny

∗
i:n) .

Applying the upper bound in Theorem 2.4 yields λmax (Λ2 + yi:ny
∗
i:n) ≤ λmax(U

(i)
+ ).

The second term in the bound follows from (2.3).
We use the absolute gap between the ith eigenvalue and its right neighbor,

gapi ≡ λi−1(A)− λi(A) ≥ 0, 2 ≤ i ≤ n,

to determine explicit expressions for the bounds in Theorem 2.6.
Corollary 2.7. In Theorem 2.6

λmin(L
(i)
± ) = λi(A) +

1

2

(
gapi ± ‖y1:i‖2 −

√
(gapi ± ‖y1:i‖2)2 ∓ 4gapi|yi|2

)
and

λmax(U
(i)
+ ) = λi(A)+

1

2

(
−gapi+1±‖yi:n‖2+

√(
gapi+1± ‖yi:n‖2

)2∓ 4gapi+1‖yi+1:n‖2
)
.

3. Hermitian perturbations. We present improved perturbation bounds for
well-separated eigenvalues of Hermitian matrices. As in the previous section, we start
by presenting an application that motivates these bounds.

3.1. Principal component analysis under the spiked covariance model.
Principal component analysis is a common tool in the analysis of high-dimensional
data [15, 17]. Given m samples xi ∈ R

n, stored in a (mean centered) m × n matrix
X, principal component analysis proceeds in three steps: It computes the empirical
covariance matrix C = 1

mX∗X; it finds orthonormal directions with maximal variance
of the data, represented by the largest eigenvalues and eigenvectors of the matrix C;
and at last it determines a low-dimensional representation of the data from linear
projections onto these directions associated with maximal variance.

A common model for the analysis of principal component analysis on high-
dimensional data is a small rank linear mixture or “spiked covariance model” [8, 16,
25]. Under this model, each data sample xi is an independent identically distributed
random vector of the form

x =

k∑
j=1

ujvj + σξ,

where uj are random variables, also referred to as components or latent variables, the
vectors vj ∈ R

n are the responses, ξ ∈ R
n is a multivariate Gaussian noise vector with

identity covariance matrix, and the scalar σ is the level of noise.
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If all k random variables uj are uncorrelated with zero mean and unit variance,
and all eigenvectors vj are orthogonal, then the first k eigenvalues and eigenvector
pairs of the population covariance matrix are (‖vj‖2+σ2, vj). Given that we have only
a finite dataset {xi}mi=1, the question is how close are the eigenvalues and eigenvectors
of the empirical noisy covariance matrix C to their limiting values?

We formulate this problem in terms of matrix perturbation theory by working in
an orthonormal basis whose first k vectors are vj/‖vj‖ and by writing the empirical
covariance matrix as

C = A + E, where A =

⎛⎜⎜⎜⎝
‖v1‖2 + σ2

. . .

‖vk‖2 + σ2

σ2In−k

⎞⎟⎟⎟⎠ .

We want to determine under which conditions the first few (largest) eigenvalues
and eigenvectors of C correspond to the first few latent variables and characteristic
responses of A, and how close these noisy estimates are to the unperturbed eigenvalues
and eigenvectors of A. Many papers in statistics have studied the asymptotic distribu-
tion of the eigenvalues and eigenvectors of C in the limit as m→∞; see [1, 2, 9, 15, 24]
and the references therein. However, in our application we are interested in answers
to these questions for a finite number of samples m.

In the context of matrix perturbation theory, we look for absolute normwise per-
turbation bounds for eigenvalues of Hermitian matrices A and A + E. In partic-
ular, assuming that the signals uj have a significant signal-to-noise ratio, we want
bounds for eigenvalues λj(A) that are well separated from all others, in the sense that
gapj > ‖E‖. Moreover, to obtain sharp bounds we cannot afford to deal with the
global norm of E, but rather we need to restrict ourselves to the contribution of E in
the relevant eigenspace of A. In the present paper, we derive such bounds that depend
on the projection of E onto a space spanned by an eigenvector vj . The analysis is
completed in a second paper [25], where we derive probabilistic bounds of the type
“‖Evj‖ ≤ f(m,n) with probability 1− δ.”

3.2. Perturbation bounds. Two types of existing two-norm results could po-
tentially be applicable for the application in section 3.1: two-norm bounds that hold
for all eigenvalues, and residual bounds that hold for a few eigenvalues. The best
known example of a two-norm bound for Hermitian matrices A,A + E ∈ C

n×n is
Weyl’s theorem [11, Theorem 8.1.6], [26, Theorem 10.3.1],

|λj(A)− λj(A + E)| ≤ ‖E‖, 1 ≤ j ≤ n.(3.1)

The advantage of (3.1) is that it applies to all eigenvalues of A and A + E. The
disadvantage is that the bound is the same for all eigenvalues and depends on the
global norm of E, which can be quite large, specifically in high dimensions, n � 1
[16].

For a single perturbed eigenvalue, one can either tighten the Bauer–Fike theorem
[6, section 4.6.1], [28, Corollary 3.3] or derive a residual bound from scratch [26, The-
orem 4.5.1] as follows. If wj is a unit norm eigenvector associated with an eigenvalue
λj(A + E), i.e., (A + E)wj = λj(A + E)wj , ‖wj‖ = 1, then

min
i
|λi(A)− λj(A + E)| ≤ ‖Ewj‖.(3.2)
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The problem is that this bound depends on the a priori unknown projection of E onto
the perturbed eigenvector wj . However, by switching the roles of A and A + E, we
obtain, for each eigenvalue λi(A),

(3.3) min
j
|λi(A)− λj(A + E)| ≤ ‖Evi‖, 1 ≤ i ≤ n.

While this bound depends on the projection of E onto an eigenspace of A, it doesn’t
pair up λi(A) with the corresponding perturbed eigenvalue λi(A + E).

Below we show that such a pairing is possible for eigenvalues λi(A) that are well
separated from the other eigenvalues of A, and that the distance between λi(A) and
λi(A+E) is bounded only by the projection of E onto the eigenspace of λi(A), rather
than by the full perturbation E. Now we use the two-sided eigenvalue separation,

Gapi ≡ min
j �=i
|λi(A)− λj(A)|, 1 ≤ i ≤ n.

In the following lemma we present a bound that is probably known, but we were not
able to find it in the literature.

Lemma 3.1. If A,A+E ∈ C
n×n are Hermitian, then for every eigenvalue λi(A)

with Gapi > 2‖E‖

|λi(A + E)− λi(A)| ≤ ‖Evi‖.

Proof. According to (3.3) for every eigenvalue λi(A) there exists an eigenvalue
λj(A + E) such that

|λi(A)− λj(A + E)| ≤ ‖Evi‖.

We now prove that under the gap condition, j = i. Weyl’s theorem implies

|λj(A)− λj(A + E)| ≤ ‖E‖.

Moreover, all other eigenvalues of A are further from λi(A), because for j 	= i,

|λi(A)− λj(A + E)| ≥ |λi(A)− λj(A)| − |λj(A)− λj(A + E)| ≥ Gapi − ‖E‖ > ‖E‖.

This means that for each eigenvalue λi(A) satisfying the gap condition there is exactly
one eigenvalue of A + E at distance less than ‖E‖, and this eigenvalue must be
λi(A + E). Therefore, j = i.

The condition Gapi > 2‖E‖ appears in many other contexts, because it is a suffi-
cient condition that prevents the eigenvalue λi(A+εE) from crossing other eigenvalues
for |ε| < 1 [19, Theorem II.3.9]. Now we improve the gap condition in Lemma 3.1 by
a factor of 2, but at the expense of a multiplicative factor of

√
2 in the perturbation

bound.
Theorem 3.2. If A,A + E ∈ C

n×n are Hermitian, then for every eigenvalue
λi(A) with Gapi > ‖E‖

|λi(A)− λi(A + E)| ≤
√

2‖Evi‖.

Proof. Fix an index i, and let

V ∗AV =

(
λi(A)

Λi

)
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be an eigenvalue decomposition of A, where V is unitary with leading column V e1 =
vi. Partition

V ∗EV =

(
fii f∗

f Ei

)
conformally with V ∗AV . Then we can write V ∗(A + E)V = M + F , where

M ≡
(
λi(A)

Λi + Ei

)
, F ≡

(
fii f∗

f

)
.

From
√|fii|2 + 4‖f‖2 ≤ |fii|+ 2‖f‖ follows

‖F‖ =
1

2

(
|fii|+

√
|fii|2 + 4‖f‖2

)
≤ |fii|+ ‖f‖ ≤

√
2‖Evi‖.

Weyl’s theorem (3.1) implies

|λj(M)− λj(M + F )| ≤ ‖F‖ ≤
√

2‖Evi‖, 1 ≤ j ≤ n.

Let λi(A) be the kth eigenvalue of M so that λk(M) = λi(A) and |λi(A)−λk(A+E)| ≤√
2‖Evi‖. We now prove that if Gapi > ‖E‖, then λi(A) is indeed the ith eigenvalue

of M .

Assume Gapi > ‖E‖. Since λj(A) for j 	= i are the eigenvalues of Λi, we can
write the eigenvalues of Λi +Ei as λj(A) + γj for j 	= i. Weyl’s theorem (3.1) implies
|γj | ≤ ‖Ei‖ ≤ ‖E‖. For i + 1 ≤ j ≤ n we have

λi(A)− (λj(A) + γj) ≥ Gapi − ‖E‖ > 0,

and for 1 ≤ j ≤ i− 1

λj(A) + γj − λi(A) ≥ Gapi − ‖E‖ > 0.

This means there are exactly n− i eigenvalues of M that are smaller than λi(A), and
i− 1 eigenvalues that are larger. Thus λi(A) = λi(M).

For every eigenvalue λi(A), Theorem 3.2 bounds the distance to a perturbed
eigenvalue in terms of ‖Evi‖. Since E is Hermitian, ‖Evi‖ = ‖viv∗i E‖ is the orthogonal
projection of E onto the eigenspace of λi(A).

The bound in Theorem 3.2 is tighter than (3.1) for a particular eigenvalue λi(A)
if the projection of E on the eigenspace of λi(A) is small compared to ‖E‖, i.e.,
if
√

2‖Evi‖ ≤ ‖E‖. This is typically the case for random perturbations in high
dimensions, as in principal component analysis. In contrast to (3.1), which matches up
all eigenvalues, Theorem 3.2 bounds the distance between corresponding eigenvalues
of A and A + E only for those eigenvalues of A that are sufficiently well separated
from all other eigenvalues of A.

4. Non-Hermitian perturbations. In section 3 we showed that a small Her-
mitian perturbation E of a Hermitian matrix A changes a well-separated eigenvalue
λi(A) by at most ‖Evi‖ rather than by the full norm ‖E‖. We extend this approach
to general non-Hermitian perturbations E and obtain bounds that are comparable to
those for Hermitian perturbations.
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Since a non-Hermitian perturbation of a Hermitian matrix may lead to a
nondiagonalizable matrix, there is relatively little work on eigenvalue bounds for non-
Hermitian perturbations. A notable exception is the work by Kahan [18, 30], who
proved that all eigenvalues of A + E are included in the union of the regions

{z ∈ C : |z − λk| ≤ ‖E‖ and |(z)| ≤ ‖(E − E∗)/2‖}.
If one of these regions is isolated from the others, then it contains exactly one eigen-
value, and if both matrices A and E are real, then this eigenvalue must also be real.
Another type of eigenvalue bound for general matrices is a Gershgorin theorem [31],
which in the simplest form states that for a diagonal matrix A = diag(λ1, . . . , λn), all
eigenvalues of A + E are in the union of the disks⎧⎨⎩z ∈ C : |z − λk − Ekk| ≤

∑
j �=k

|Ekj |
⎫⎬⎭ .

Below we derive a bound that is sharper whenever a perturbed eigenvalue is close to a
well-separated eigenvalue, where the separation condition involves the two-sided gap

Gapi ≡ min
j �=i
|λi(A)− λj(A)|.

The bound is almost, but not quite, the same as the one for Hermitian perturbations
in Theorem 3.2.

Theorem 4.1. Let A,E ∈ C
n×n, where A is Hermitian, let μ be a (possibly

complex) eigenvalue of A + E, and let λi(A) be an eigenvalue of A closest to μ, i.e.,

|λi(A)− μ| = min
1≤l≤n

|λl(A)− μ|.

If Gapi > 3‖E‖, then

|λi(A)− μ| ≤
√

5‖Evi‖.
Proof. Abbreviate λi ≡ λi(A), and let w be a unit norm eigenvector of μ, i.e.,

(A + E)w = μw, ‖w‖ = 1. By assumption λi is, among all eigenvalues of A, an
eigenvalue that is closest to μ. Thus the Bauer–Fike theorem (3.2) applied to the
Hermitian matrix A and the perturbed eigenvalue μ of the matrix A + E yields

|λi − μ| ≤ ‖Ew‖.(4.1)

We now perform a similarity transformation of A that makes it possible to express
the perturbed eigenvector w in terms of the exact eigenvector vi.

Let W =
(
w W2

)
be a unitary matrix and perform the similarity transformation

W ∗AW =

(
μ− w∗Ew b∗

b M

)
,

where ‖b‖ = ‖W ∗
2 Ew‖ ≤ ‖Ew‖. Isolate the block diagonal part, W ∗AW = D + F ,

where

D ≡
(
μ− w∗Ew

M

)
, F ≡

(
b∗

b

)
.

The matrix D is Hermitian because it consists of principal submatrices of the Hermi-
tian matrix W ∗AW ; in particular the scalar μ−w∗Ew is real. We show in two steps
that μ− w∗Ew is the ith eigenvalue of D.
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1. Under the gap condition Gapi > 3‖E‖, among all eigenvalues of A, λi is the
only eigenvalue closest to μ−w∗Ew, with all other eigenvalues at a distance
of at least ‖E‖.
To show this, apply the Bauer–Fike theorem (3.2) to the leading diagonal
element of D to conclude that there exists an eigenvalue λk(A) so that

|λk(A)− (μ− w∗Ew)| ≤ ‖F‖ ≤ ‖Ew‖.

We show that k = i by showing that μ − w∗Ew is too far away from all
eigenvalues of A but λi. The gap condition implies for j 	= i

|λj(A)− (μ− w∗Ew)| = |λj(A)− λi + λi − μ + w∗Ew|
≥ |λj(A)− λi| − ‖Ew‖ − |w∗Ew|
≥ Gapi − 2‖Ew‖ > ‖E‖.

Therefore λi is the only eigenvalue of A that is close to μ − w∗Ew. Hence
k = i and

|λi − (μ− w∗Ew)| ≤ ‖Ew‖.(4.2)

2. μ− w∗Ew is the ith eigenvalue of D.
As in the proof of Theorem 3.2 we show that this follows from the gap con-
dition. Weyl’s theorem (3.1),

|λl(A)− λl(D)| ≤ ‖F‖ ≤ ‖Ew‖, 1 ≤ l ≤ n,(4.3)

allows us to write the eigenvalues of D as λj(A) + γj , where |γj | ≤ ‖Ew‖.
Assuming Gapi > 3‖E‖, we have for i + 1 ≤ j ≤ n

μ− w∗Ew − (λj(A) + γj) = (μ− w∗Ew − λi) + (λi − λj(A)) + γj

≥ −|μ− w∗Ew − λi|+ (λi − λj(A))− |γj |
≥ Gapi − 2‖Ew‖ > 0,

where the last inequality follows from (4.2). Similarly for 1 ≤ j ≤ i− 1

λj(A) + γj − (μ− w∗Ew) ≥ Gapi − 2‖Ew‖ > 0.

This means there are exactly n − i eigenvalues of D that are smaller than
λi(A), and i− 1 eigenvalues that are larger. Thus μ− w∗Ew = λi(D).

Because μ − w∗Ew is the ith eigenvalue of D, no eigenvalue of M can be the ith
eigenvalue of D. We use this fact to express w in terms of vi. The partitioning of
W ∗AW provides a 2× 2 system from which one can solve for vi. Abbreviate(

z1

z2

)
=

(
w∗vi
W ∗

2 vi

)
= W ∗vi.

From Avi = λivi follows

0 = (W ∗AW − λiI)W
∗vi =

(
μ− w∗Ew − λi b∗

b M − λiI

)(
z1

z2

)
.(4.4)
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We show that M − λiI is nonsingular by showing that λi cannot be an eigenvalue of
M . Above we established that no eigenvalue of M can be the ith eigenvalue of D.
Hence λj(M) = λjk(D) for some jk 	= i, and (4.3) and the gap condition imply

|λj(M)− λi| = |λjk(D)− λi| = |(λjk(A)− λi) + (λjk(D)− λjk(A))|
≥ Gapi − ‖E‖ > 2‖E‖ > 0.

Thus λi is not an eigenvalue of M , and M − λiI is nonsingular.
As a consequence we can solve for z2 in (4.4) and obtain z2 = −z1(M − λiI)

−1b.
Since z1 = 0 would imply z2 = 0, and then vi = 0, we must have z1 	= 0. From the
definition of z1 and z2 follows

W ∗vi = z1

(
1

(M − λiI)
−1b

)
.

Multiplying on the left by the unitary matrix W =
(
w W2

)
yields

vi = z1

(
w + W2(M − λiI)

−1b
)
, z1 = 1/

∥∥∥∥( 1
(M − λiI)

−1b

)∥∥∥∥ .
Solving for w gives

w =
√

1 + ‖(M − λiI)−1b‖2 vi −W2(M − λiI)
−1b,

and a subsequent multiplication by E yields

Ew =
√

1 + ‖(M − λiI)−1b‖2 Evi − EW2(M − λiI)
−1b.

Thus

‖Ew‖ ≤
√

1 + ‖(M − λiI)−1b‖2 ‖Evi‖+ ‖E‖‖(M − λiI)
−1b‖.

To bound ‖(M − λiI)
−1‖ from above, we use the fact from item 2 that μ− w∗Ew is

the ith eigenvalue of D. As a consequence the eigenvalues of M correspond to λj(D)
for j 	= i. This means there is a k 	= i so that

1/‖(M − λiI)
−1‖ ≥ min

j
|λj(M)− λi| = |λk(D)− λi| ≥ |λi − λk(A)| − |λk(D)− λk(A)|

≥ Gapi − ‖E‖ > 2‖E‖,

where the next-to-last inequality follows from (4.3). Hence

‖(M − λiI)
−1b‖ ≤ ‖Ew‖

2 ‖E‖ ≤
1

2
.

At last, we substitute this into the above bound for ‖Ew‖ to obtain

‖Ew‖ ≤
√

5

2
‖Evi‖+ ‖E‖‖Ew‖

2 ‖E‖ ≤
√

5

2
‖Evi‖+

‖Ew‖
2

,

so ‖Ew‖| ≤ √5‖Evi‖. The result follows by substituting this bound for ‖Ew‖ in
(4.1).
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Abstract. Large-scale eigenvalue and singular value computations are usually based on ex-
tracting information from a compression of the matrix to suitably chosen low dimensional subspaces.
This paper introduces new a posteriori relative error bounds based on a residual expressed using
the largest principal angle (gap) between relevant subspaces. The eigenvector approximations are
estimated using subspace gaps and relative separation of the eigenvalues.

Key words. eigenvalues, Rayleigh–Ritz approximation, singular values, subspace gap

AMS subject classifications. 15A18, 15A23, 15A42, 65F15

DOI. 10.1137/070689425

1. Introduction. Let A = UΣV ∗ be the SVD of A ∈ Cm×n, m ≥ n. To
approximate � ≤ min{m,n} desired singular triplets (σi, ui, vi) (Avi = uiσi), one can
deploy the standard Rayleigh–Ritz procedure to extract approximations from suitably
chosen �-dimensional subspaces X , Y defined as images of orthonormal matrices X ∈
C
m×�, Y ∈ C

n×�, respectively. For given X , Y , optimal approximation is obtained
using the SVD of the Rayleigh quotient compression C = X∗AY : the singular values
γ1 ≤ · · · ≤ γ� of C approximate some of the singular values σ1 ≤ · · · ≤ σn of A. The
approximation error is bounded by the spectral norms of the residuals R = AY −XC,
L = A∗X − Y C∗. More precisely, for some singular values σi1 , . . . , σi� of A we have

(1.1) max
1≤j≤�

|σij − γj| ≤ max{‖R‖2, ‖L‖2}.

This is a generalization of the Kahan [7] theorem for Hermitian Rayleigh–Ritz pro-
cedure with Hermitian H and Y = X . The Rayleigh quotient matrix C is optimal
in the sense that it minimizes the residual in both the Frobenius and the spectral
norm. For details see, e.g., [13], [17]. The SVD residual bound (1.1) is used, e.g., in
Jacobi–Davidson type SVD computation [5].

LetX⊥, Y⊥ be orthonormal matrices such that
(
X X⊥

) ∈ Cm×m and
(
Y Y⊥

) ∈
Cn×n are unitary, and let C⊥ = X∗

⊥AY⊥ be the corresponding Rayleigh quotient. De-
fine Ã = XCY ∗ + X⊥C⊥Y ∗

⊥. It is convenient to write A and Ã in the block-matrix
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form

Ã =
(
X X⊥

)(C 0
0 C⊥

)(
Y ∗

Y ∗
⊥

)
= XCY ∗ +X⊥C⊥Y ∗

⊥,(1.2)

A =
(
X X⊥

)( C X∗AY⊥
X∗

⊥AY C⊥

)(
Y ∗

Y ∗
⊥

)
= XCY ∗ +X⊥C⊥Y ∗

⊥ + E,(1.3)

where E =
(
X X⊥

)
( 0 X∗AY⊥
X∗

⊥AY 0 )( Y
∗

Y ∗
⊥

) can be expressed as

E = X⊥X∗
⊥AY Y ∗ +XX∗AY⊥Y ∗

⊥ = (AY −XC)Y ∗ +X(A∗X − Y C∗)∗.

The perturbation E depends on the residuals R = AY − XC, L = A∗X − Y C∗. It
is easily checked that in the trace scalar product 〈E, Ã〉F = 0. Further, ‖E‖2 =
max{‖R‖2, ‖L‖2}, and X∗R = 0, Y ∗L = 0. The latter two equalities represent
Galerkin conditions with test spaces equal to the search spaces X , Y.

Proposition 1.1. The matrix XCY ∗ = XX∗AY Y ∗ is the best approximation of
A from the subspace S(X,Y ) = {XSY ∗, S ∈ C�×�}, i.e.,

min
S∈C�×�

‖A−XSY ∗‖F = ‖A−XCY ∗‖F =
√
‖A‖2F − ‖C‖2F .

The matrix Ã is the best approximation of A from the 〈·, ·〉F -orthogonal sum S(X,Y )⊕F
S(X⊥, Y⊥).

Proof. In the Frobenius (trace) scalar product 〈·, ·〉F , A−XCY ∗ is orthogonal to
XSY ∗, 〈A−XCY ∗, XSY ∗〉F = 0 for all S. Similarly, 〈A− Ã, XSY ∗ +X⊥S̃Y ∗

⊥〉F = 0
for all S ∈ C�×�, S̃ ∈ C(m−�)×(n−�).

The key idea then is to consider the given A as perturbed Ã and to take advantage
of the fact that we can compute the SVD of C. Since the singular values γ1 ≤ · · · ≤ γ�
of C coincide with some of the singular values σ̃1 ≤ · · · ≤ σ̃n of Ã (γj = σ̃ij for
some ij), the comparison of the γj and the some of the σi is reduced to singular
value perturbation analysis under the structured perturbation of Ã to A = Ã + E. An
application of the classical perturbation theory yields

(1.4) max
1≤i≤n

|σ̃i − σi|
‖A‖2 ≤ ‖E‖2‖A‖2 =⇒ max

1≤j≤�
|γj − σij |
‖A‖2 ≤ ‖E‖2‖A‖2 .

Note that we can write the residuals as R = (I − XX∗)AY , L = (I − Y Y ∗)A∗X .
It is easily seen that both residuals are zero if and only if AY ⊆ X and A∗X ⊆ Y.
In that case (X ,Y) is called a pair of singular subspaces [15, Definition 6.1]. (Here
AY ≡ {Ay : y ∈ Y}.) In the Hermitian case, a zero residual corresponds to an
H-invariant subspace X , HX ⊆ X .

Our approach in this paper is based on the following observations:
(i) The angles �(X ,AY) and �(Y,A∗X ) are natural measures of the departure

of (X ,Y) from being a pair of singular subspaces. (Here the angle between two
subspaces of the same dimension is defined as the largest principal angle. For basics
on angles between subspaces see [17, I.5].) To illustrate, consider the right residual
R = (I −XX∗)AY with full rank AY , compute the thin QR factorization AY = QT ,
and note that R(T−1Q∗) = R(AY )† = (I − XX∗)QQ∗. In other words, the size of
the residual R “relative to AY ,” expressed as the product of projectors, is related to
the gap between the subspaces X and AY. Such a subspace gap residual, in addition
to the classical residuals, may be useful in extracting valuable information from given
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subspaces, or even in constructing subspace corrections. We note here that in large-
scale computation, information is always extracted from a subspace, and its quality
can be tested using another subspace (e.g., Petrov–Galerkin framework). So, even
though we compute with particular bases, the underlying theory is most naturally
expressed using subspaces.

(ii) Classical residual bounds give an estimate of the type (1.4); that is, the
approximation error is measured relative to the matrix norm. It would be useful to
have tight bounds for the relative errors |σij − γj |/γj , 1 ≤ j ≤ �. However, for sharp
relative error bounds, modern perturbation theory requires that the relative size of
the perturbation is expressed as the norm of the quotient of matrices (e.g., ‖δAA†‖2
in the multiplicative form of the perturbation A+ δA = (I + δAA†)A), rather than the
quotient of the norms (‖δA‖2/‖A‖2 in the additive form A + δA). The multiplicative
form leads to scaled residuals with norms expressed as functions of the angles between
certain subspaces.

(iii) The error bounds for the eigenvectors and singular vectors should preferably
depend on relative gaps in the spectrum. For instance, if a relative gap is used,
two different eigenvalues λi and λj of a Hermitian positive definite matrix H are
considered well separated if |λi − λj |/

√
λiλj is not too small. Take, e.g., λi = 10−10,

λj = 2 ·10−10. At the same time, if the absolute gap |λi−λj|/‖H‖2 is used, these two
eigenvalues are considered pathologically close if both are much smaller that ‖H‖2
(take here, e.g., ‖H‖2 = 1). For the more favorable relative separation and better
estimates for the Ritz vectors in such cases, the residual must be scaled as discussed
above.

Such considerations are introduced in [1], [2], and here we improve them, provide
new bounds for the Ritz vectors and harmonic Ritz values, and generalize them to
the singular value decomposition.

2. New tan Θ residual bounds. The main shortcoming of estimate (1.4) is
that it does not take advantage of the geometric structure of the perturbation. We
exploit that structure and show how the angles �(X ,AY) and �(Y,A∗X ) naturally
appear in the residual bounds.

Proposition 2.1. Let X ⋂ Im(A)⊥ = {0} and �(A∗X ,Y) < π/2. Then the
Rayleigh quotient matrix C = X∗AY is nonsingular.

Proof. Because of Im(A)⊥ = Ker(A∗), A∗X is of full column rank. Using the
thin QR factorization of A∗X , A∗X = QT (T � × � nonsingular), we can write C =
T ∗(Q∗Y ). Now the second assumption implies nonsingularity of Q∗Y .

Theorem 2.2. Let the Rayleigh quotient matrix C be nonsingular. Then the
singular values γ1 ≤ · · · ≤ γ� of C approximate at least � singular values σi1 ≤ · · · ≤ σi�
of A, with the error bound

(2.1) max
1≤j≤�

|σij − γj |√
σijγj

≤ 1
2

tan�(X ,AY) +
1
2

tan�(Y,A∗X ).

Proof. Let, in (1.3), F = X∗AY⊥, G = X∗
⊥AY . The block elimination

(2.2)
(

I 0
−GC−1 I

)(
C F
G C⊥

)(
I −C−1F
0 I

)
=
(

C 0
0 C⊥ −GC−1F

)

represents a multiplicative perturbation with the corresponding additive form (cf.
(1.2)) Ă = XCY ∗ +X⊥C⊥Y ∗

⊥ −X⊥X∗
⊥AY (X∗AY )−1X∗AY⊥Y ∗

⊥. If σ̆1 ≤ · · · ≤ σ̆n are
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the singular values of Ă, then γj = σ̆ij , j = 1, . . . , �, and by [9, Corollary 5.5],

max
1≤i≤n

|σ̆i − σi|√
σ̆iσi

≤ 1
2
‖GC−1‖2 +

1
2
‖C−1F‖2.

It remains to give a geometric interpretation to the scaled residuals GC−1 and C−1F .
If A∗X = QT is the QR factorization, then C−1F = (Q∗Y )−1Q∗Y⊥. From the CS
decomposition of the partitioned matrix

(
Y Y⊥

)∗
Q, we conclude that ‖C−1F‖2 =

tan �(A∗X ,Y). Similarly, ‖GC−1‖2 = tan �(X ,AY).
Theorem 2.3. Let the Rayleigh quotient matrix C be nonsingular. Then the

singular values γ1 ≤ · · · ≤ γ� of C approximate at least � singular values σi1 ≤ · · · ≤ σi�
of A, with the error bound
(2.3)

max
1≤j≤�

|σij − γj |
min(σij , γj)

≤ tan �(X ,AY) + tan�(Y,A∗X ) + tan�(X ,AY) · tan�(Y,A∗X ).

Proof. Relation (2.2) can be equivalently stated as

(2.4)
(

C F
G C⊥

)
=
(

I 0
GC−1 I

)
︸ ︷︷ ︸

S1

(
C 0
0 C⊥ −GC−1F

)(
I C−1F
0 I

)
︸ ︷︷ ︸

S2

and an application of [3, Theorem 3.1] to (2.2) and (2.4) yields

σmin(S−1
1 ) σmin(S−1

2 ) σi ≤ σ̆i ≤ σi σmax(S−1
1 ) σmax(S−1

2 )
σmin(S1) σmin(S2) σ̆i ≤ σi ≤ σ̆i σmax(S1) σmax(S2).

Now, σmax(S1) ≤ 1 + ‖GC−1‖2, σmax(S2) ≤ 1 + ‖C−1F‖2 and similar bounds with
S−1

1 , S−1
2 give

max
1≤i≤n

|σ̆i − σi|
min(σ̆i, σi)

≤ ‖GC−1‖2 + ‖C−1F‖2 + ‖GC−1‖2‖C−1F‖2.

Finally, we note that with some indices i1, . . . , i�, γj = σ̆ij , j = 1, . . . , �.
If U and V are an exact pair of singular subspaces, then AV ⊆ U . Thus, it seems

natural to try to enforce this relation for the approximate pair X , Y, e.g., by taking
X = AY. For given complex orthonormal Y , the corresponding X is defined by the
QR factorization AY = XP . Without loss of generality we assume that AY is of full
column rank. (Else, a rank revealing QR factorization of AY can be used to select
columns Ŷ of Y such that AŶ has full column rank.)

Corollary 2.4. Let X = AY, and let the Rayleigh quotient C be nonsingular.
Then the singular values γ1 ≤ · · · ≤ γ� of C approximate at least � singular values
σi1 ≤ · · · ≤ σi� of A, with the error bound
(2.5)

(a) max
1≤j≤�

|σij − γj |√
σijγj

≤ 1
2

tan �(A∗X ,Y), (b) max
1≤j≤�

|σij − γj |
min{σij , γj}

≤ tan �(A∗X ,Y).

Proof. For given complex orthonormal Y , the corresponding X is defined by the
QR factorization AY = XP . In that case C = X∗AY = P , G ≡ X∗

⊥AY = 0, and
R = AY −XC = 0. Hence, (2.5.a), (2.5.b) hold as special cases of Theorem 2.2 and
Theorem 2.3, respectively.
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Remark 2.5. In (2.4), if G = 0, then S1 = I, S2 =
(
I C−1F
0 I

)
. Let ξ = ‖C−1F‖2.

Then σmax(S2) =
√

1 + ξ2/2 + ξ
√

1 + ξ2/4, and for small �(A∗X ,Y), the relation
(2.5)(b) reads

max
1≤i≤n

|σ̃i − σi|
min{σ̃i, σi} ≤

1
2

tan �(A∗X ,Y) +O(tan2 �(A∗X ,Y)).

This shows that the above asymptotic formula is as sharp as (2.5)(a).

2.1. Using the complements X ⊥, Y⊥. Next, we show that the complements
of the search spaces contain information that can be accessed using the generalized
inverse of A. In general, the matrix C⊥ = X∗

⊥AY⊥ is rectangular (m − �) × (n − �),
and the following technical lemmas are used to reduce the general case to a square
nonsingular one.

Lemma 2.6. Let X ⊆ Im(A). Then we can choose X⊥ so that C⊥ =
(

Ĉ⊥
0

)
and

G ≡ X∗
⊥AY =

(
Ĝ
0

)
, where α = rank(A), Ĉ⊥ ∈ C(α−�)×(n−�), and Ĝ ∈ C(α−�)×�.

Proof. Let X⊥ be constructed so that in the block partition X⊥ =
(
X⊥,1 X⊥,2

)
the α − � columns of X⊥,1 span the part of the orthogonal complement of X inside
Im(A), and X∗

⊥,2A = 0.
Lemma 2.7. Let X ⊆ Im(A). Then A†X = (A∗X⊥,1 ⊕ Ker(A))⊥. In particular,

if A is square nonsingular, then A−1X = (A∗X⊥)⊥.
Lemma 2.8. Let X ⊆ Im(A) and �(A†X ,Y) < π/2. Then the matrix Ĉ⊥ =

X∗
⊥,1AY⊥ in Lemma 2.6 has full row rank, rank(Ĉ⊥) = α− �. Hence, if α = n, Ĉ⊥ is

square nonsingular matrix.
Proof. Then Ĉ⊥ = X∗

⊥,1AY⊥ = (A∗X⊥,1)∗Y⊥, where the (n × (α − �)) matrix
A∗X⊥,1 has full column rank. Let A∗X⊥,1 = Q1T1 be a thin QR factorization, where
T1 is (α − �) × (α − �) nonsingular. Then Ĉ⊥ = T ∗

1 (Q∗
1Y⊥), where Q∗

1Y⊥ is full row
rank by the assumption �(A†X ,Y) < π/2 and by Lemma 2.7.

Lemma 2.9. Let, in addition to the above, Y ⊆ Im(A∗). Then we can choose Y⊥
so that F =

(
F̂ 0

)
, Ĉ⊥ =

(
Č⊥ 0

)
, where F̂ ∈ C�×(α−�) and Č⊥ ∈ C(α−�)×(α−�).

Proof. Let Y⊥ be such that in the partition Y⊥ =
(
Y⊥,1 Y⊥,2

)
the α− � columns

of Y⊥,1 span the part of Y⊥ inside Im(A∗), and AY⊥,2 = 0
Theorem 2.10. Let X ⊆ Im(A), Y ⊆ Im(A∗), and �(A∗X ,Y) < π

2 , �(A†X ,Y) <
π/2. Then the singular values γ1 ≤ · · · ≤ γ� of C approximate at least � singular values
σi1 ≤ · · · ≤ σi� of A with the error bound

(2.6) max
1≤j≤�

|σij − γj |
γj

≤ max{tan �(A∗X ,Y), tan �(A†X ,Y)}.

Proof. Using Lemmas 2.6, 2.8, and 2.9, we represent A as

A =
(
X X⊥,1 X⊥,2

)⎛⎝C F̂ 0

Ĝ Č⊥ 0
0 0 0

⎞
⎠
⎛
⎝ Y ∗

Y ∗
⊥,1
Y ∗
⊥,2

⎞
⎠ ,

where F̂ = X∗AY⊥,1 ∈ C
�×(α−�), Ĝ = X∗

⊥,1AY ∈ C
(α−�)×�, and Č⊥ = X∗

⊥,1AY⊥,1 ∈
C(α−�)×(α−�) is nonsingular. (If A∗X⊥,1 = Q1T1 is the QR factorization of A∗X⊥,1,
then σmin(Q∗

1Y⊥,1) ≥ cos�(A∗X⊥,1 ⊕ Ker(A),Y⊥) = cos�(A†X ,Y) > 0.) Now, we



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SUBSPACE GAP RESIDUALS 59

can write

(2.7)

⎛
⎝C F̂ 0

Ĝ Č⊥ 0
0 0 0

⎞
⎠ =

⎛
⎝C 0 0

0 Č⊥ 0
0 0 0

⎞
⎠
⎛
⎝ I� C−1F̂ 0

Č−1
⊥ Ĝ Iα−� 0
0 0 In−α

⎞
⎠ ,

where Ω =
(

I� C−1F̂

Č−1
⊥ Ĝ Iα−�

)
⊕ In−α is nonsingular with 1 − ε ≤ σmin(Ω) ≤ σmax(Ω) ≤

1 + ε, ε = max{‖C−1F̂‖2, ‖Č−1
⊥ Ĝ‖2}. If the postmultiplication by Ω in (2.7) is taken

as a multiplicative perturbation, then we can apply [3, Theorem 3.1] to conclude
σmin(Ω) ≤ σij/γj ≤ σmax(Ω), and thus

(2.8) max
1≤j≤�

|γj − σij |
γj

≤ ε.

Here by Theorem 2.2, ‖C−1F̂‖2 = ‖C−1F‖2 = tan�(A∗X ,Y). It remains to estimate
Č−1
⊥ Ĝ = (Q∗

1Y⊥,1)−1Q∗
1Y . We first note that ‖(Q∗

1Y⊥,1)−1Q∗
1Y ‖2 = ‖Y ∗Q1(Y ∗

⊥Q1)†‖2.
Using the CS decomposition Y ∗Q1 = W1ΦZ, Y ∗

⊥Q1 = W2ΨZ, we can conclude that
‖(Q∗

1Y⊥,1)
−1Q∗

1Y ‖2 ≤ ‖ΦΨ†‖2 = tan�(A†X ,Y). Finally, note that (2.8) provides
useful information for ε < 1, that is, if both angles in question are less than π/4.

3. Using the Gram matrix of A. The SVD of A is conveniently analyzed
using the Gram matrices A∗A and AA∗. For simplicity, as in section 2.1, we may
assume that A is square and nonsingular and we will consider the eigenvalue problem
of H = A∗A. By the QR factorization of A, H can be represented in the form of the
Cholesky factorization H = LL∗.

To introduce the key quantities for residual estimates in the Hermitian positive
definite case, we start with a theorem which gives a simple and elegant proof of the
existing linear residual bounds from [1], [2].

Theorem 3.1. Let H be positive definite with an arbitrary full rank factorization
H = LL∗ and eigenvalues 0 < λ1 ≤ · · · ≤ λn. Let X be an �-dimensional subspace of
Cn given as the range of orthonormal X ∈ Cn×�, and let M = X∗HX be the Rayleigh
quotient. With the residual R = HX−XM define δH = RX∗ +XR∗ and change H to
H̃ = H−δH. Then H̃ is positive definite as well, and its eigenvalues 0 < λ̃1 ≤ · · · ≤ λ̃n
satisfy

(3.1) max
1≤i≤n

|λi − λ̃i|
λ̃i

≤ sin�(L∗X , L−1X ),

where ψ ≡ �(L∗X , L−1X ) = �(L∗X , (L∗X⊥)⊥) = �(L∗X⊥, L−1X⊥) is independent
of the choice of L. For instance, L can be the Cholesky factor (easy to compute) or
the positive definite square root of H (hard to compute but convenient for the theory).

Proof. Let X⊥ be an orthonormal matrix spanning X⊥ and let

Ĥ =
(
X X⊥

)∗
H
(
X X⊥

)
, W = X∗

⊥HX⊥, K = X∗
⊥HX = (L∗X⊥)∗(L∗X).

Then

Ĥ =
(

M1/2 0
0 W1/2

)(
I M−1/2K∗W−1/2

W−1/2KM−1/2 I

)(
M1/2 0

0 W1/2

)
∼= H,

where ∼= denotes (unitary) similarity. Let Ψ ≡ W−1/2KM−1/2 have SVD Ψ =
UψΣψV ∗

ψ , Σψ = diag(cosψi)
min(�,n−�)
i=1 . The angles ψi are the acute principal an-

gles between L∗X and L∗X⊥. It is easily checked that sinψ = ‖Ψ‖2 < 1 and that
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the eigenvalues of
(
I Ψ∗
Ψ I

)
are 1 ± ψi, 1 ≤ i ≤ min(�, n − �) and 1 with multiplicity

n− 2 min(�, n− �). Then

H ∼= Ĥ ∼=
(
I Ψ∗

Ψ I

)1/2(
M 0
0 W

)(
I Ψ∗

Ψ I

)1/2

and
(

M 0
0 W

)
∼= H̃.

This argument is closed by an application of the Ostrowski theorem [6, Theorem
4.5.9].

Remark 3.2. An interesting feature of Theorem 3.1 is that it simultaneously
estimates the quality of X and X⊥, with the same error bound which measures how
much X or X⊥ moves under the action of H. This respects the fact that in the
Hermitian case H-invariance of X is equivalent to H-invariance of X⊥. Further, in
the H-scalar product (<x, y>H= y∗Hx), the angle �(L∗X , L−1X ) corresponds to the
angle �H(X ,H−1X ). (For angles between subspaces in the H-scalar product see [8].)
Similarly, in the H−1-scalar product, �(L∗X , L−1X ) = �H−1(X ,HX ). This shows
that ψ is a very natural gap measure for departure from H-invariance.

The gap residual sin�(L∗X , L−1X ) also naturally measures the distance (in the
subspace gap metric) between X and certain H-invariant subspace.

Theorem 3.3. Let the matrices H and H̃ in Theorem 3.1 be factored as

H =
(
U1 U2

)(Λ1 0
0 Λ2

)(
U∗

1

U∗
2

)
, H̃ =

(
X X⊥

)(M 0
0 W

)(
X∗

X∗
⊥

)
,

where
(
U1 U2

)
and

(
X X⊥

)
are unitary. Let the eigenvalues (λ(1)

i )�i=1 of Λ1 and

(ωj)n−�j=1 of W be disjoint, with the relative separation γ = mini,j | ln λ
(1)
i

ωj
|. Then

sin�(Im(U1),X ) ≤ π

γ

sinψ
2
√

1− sinψ
, ψ = �(L∗X , L−1X ).

Proof. The proof is based on a perturbation result by Li [11, Theorem 1], who ele-
gantly used the Sylvester equation with a structured right-hand side. In our case, the
perturbation itself is nicely structured and we exploit that structure. First note that
H̃ = L(I − L−1δHL−∗)L∗ = LΞΞ∗L∗, where Ξ is the square root of I − L−1δHL−∗.
Let L̃ = LΞ. Then, following [11], H̃−H = L̃(Ξ∗−Ξ−1)L∗ and premultiplying by X∗

⊥
and postmultiplying by U1 we obtain W(X∗

⊥U1)− (X∗
⊥U1)Λ1 = X∗

⊥L̃(Ξ∗−Ξ−1)L∗U1.

Clearly, X∗
⊥L̃ = W1/2Q̃∗ with some orthonormal Q̃. In the same way, L∗U1 = QΛ1/2

1

with some orthonormal Q.
Consider the structure of the scaled perturbation Ω ≡ L−1δHL−∗. (Recall that X

is H̃-invariant and X∗H̃X = M.) Set Y = L∗X , Z = L−1X , Y = Im(Y ), Z = Im(Z).
It holds that Y⋂Z⊥ = Z⋂Y⊥ = {0} and

Ω = (I − ZY ∗)Y Z∗ + ZY ∗(I − Y Z∗) = (I − PZ,Y)PY,Z + PZ,Y(I − PY,Z),

where PY,Z = (PZPY)†, PZ,Y = (PYPZ)† are the oblique projections (e.g., PY,Z
projects on Y along Z⊥). In fact, in a suitable orthogonal basis B of Cn, the projectors
PY and PZ can be represented as (see Wedin [19])

PY =

⎛
⎜⎜⎜⎝

Ik
d⊕
i=1

Ψ0
i

JY

⎞
⎟⎟⎟⎠ , PZ =

⎛
⎜⎜⎜⎝

Ik
d⊕
i=1

Ψi

JZ

⎞
⎟⎟⎟⎠ , k = dim(Y⋂Z) ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SUBSPACE GAP RESIDUALS 61

where Ψ0
i =

(
1
0

) (
1 0

)
, Ψi =

( cosψi

sinψi

) (
cosψi sinψi

)
, ψi ∈ (0, π2 ). For general sub-

spaces, JY and JZ are diagonal matrices with diagonal entries from {0, 1} and with
JY JZ = 0. In our case it is necessary that JY = JZ = 0. Namely, an instance of,
e.g., (JY )ii = 1, (JZ)ii = 0 corresponds to a direction in Y orthogonal to entire Z,
which we already have excluded as impossible. The perturbation Ω is in the basis B
represented as

Ω =

⎛
⎜⎜⎜⎝

0
d⊕
i=1

Ωi

0

⎞
⎟⎟⎟⎠ , Ωi = −

(
0 tanψi

tanψi 2 tan2 ψi

)
∼=

⎛
⎜⎝
− sinψi

1− sinψi
0

0
sinψi

1 + sinψi

⎞
⎟⎠ ,

where∼= denotes (unitary) similarity. Note that this special structure of Ω implies that
I−Ω is always positive definite (with eigenvalues 1, 1

1−sinψi
, 1

1+sinψi
, 1 ≤ i ≤ d); thus

it can be written as I−Ω = ΞΞ∗, where Ξ is the definite square root or, e.g., Cholesky
factor of I − Ω. The singular values of Ξ−1 − Ξ∗ are zero and sinψi/

√
1 + sinψi,

sinψi/
√

1− sinψi, 1 ≤ i ≤ d.
The proof is completed by an application of [11, Theorem 1], which states that

‖X∗
⊥U1‖2 ≤ (π/2)‖Q̃∗(Ξ∗ − Ξ−1)Q‖2/γ.
Remark 3.4. Since H = LL∗ is similar to L∗L and H̃ = LΞΞ∗L∗ is similar to

Ξ∗L∗LΞ, we can apply [10, Theorem 3.1] to conclude

(3.2) max
1≤i≤n

|λi − λ̃i|√
λiλ̃i

≤ ‖Ξ−1 − Ξ∗‖2 ≤ sinψ√
1− sinψ

.

The matrix Ψ = W−1/2KM−1/2 from the proof of Theorem 3.1 determines the
accuracy of the Ritz values, as shown in the following corollaries.

Corollary 3.5. Let μ1 ≤ · · · ≤ μ� be the eigenvalues of the Rayleigh quotient
M in Theorem 3.1. Then there are � eigenvalues λi1 ≤ · · · ≤ λi� of H such that
|λij − μj | ≤ ‖Ψ‖2μj for all 1 ≤ j ≤ �.

It is interesting to note that in the framework of Theorem 3.1, the locking (see,
e.g., [14]) of converged eigenvectors allows the same accuracy for the remaining wanted
eigenvalues. This is because the same bound holds for X and X⊥.

Corollary 3.6. Suppose that ‖Ψ‖2 is below the given tolerance ε > 0 and that X
is locked, meaning that the remaining computation in an eigensolver is performed with
H1 = (I −XX∗)H(I −XX∗). Then H1 determines the remaining wanted eigenvalues
up to relative error bounded by ‖Ψ‖2.

Corollary 3.7. The numbers
√
μ1 ≥ · · · ≥ √μ� approximate at least � singular

values σi1 ≥ · · · ≥ σi� of A, with the error bound

(3.3) max
1≤j≤�

|σij −√μj |√
μj

≤ ‖Ψ‖2
2− ‖Ψ‖2 .

4. Quadratic residual bounds. Our new quadratic residual bounds for eigen-
values and singular values, which we present in this section, are complementary to
those given in [16], [18], [12]. They provide relative error bounds in terms of rela-
tive gaps in the spectrum and certain angles which measure the quality of the search
subspaces. We start with the Hermitian positive definite case.
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4.1. Hermitian positive definite case. We consider positive definite opera-
tors H and H̃ in block-matrix form,

(4.1) H =
(

M K∗

K W

)
, H̃ =

(
M 0
0 W

)
, M ∈ C

�×�, W ∈ C
w×w, �+ w = n,

where the spectral decompositions of M and W are assumed to be known. Let
μ1 ≤ · · · ≤ μ� and ω1 ≤ · · · ≤ ωw be the eigenvalues of M and W, respectively.
The eigenvalues of H and H̃ are, respectively, λ1 ≤ · · · ≤ λn and λ̃1 ≤ · · · ≤ λ̃n, where
the λ̃i are obtained by merging the μj and the ωk. Since M and W are principal sub-
matrices of H, the Poincaré separation theorem (or inclusion principle) [6, Theorem
4.3.15] implies

(4.2) λj ≤ μj , 1 ≤ j ≤ �; ωk ≤ λ�+k, 1 ≤ k ≤ w.
In some situations, the spectra of M and W are separated by an interval. In that
case, there is an interval (α, β) such that λmax(M) ≤ α and β ≤ λmin(W). We shall

denote this situation by M
(α,β)� W. In that case, λ̃i = μi, 1 ≤ i ≤ �, and λ̃�+k = ωk,

1 ≤ k ≤ w. This is known to be, for many good reasons, a favorable distribution. For
now, we note that as a consequence of (4.2), it imposes similar separation inside the
spectrum of H, independent of K. To measure the degree of separation of a scalar ζ
from the spectrum S(A) of a matrix A, we will use the function

�(ζ, A) = min
λ∈S(A)

∣∣∣∣ζ − λλ
∣∣∣∣ .

The technique we use is, again, the construction of a particularly structured pertur-
bation which nicely fits as input into the state-of-the-art perturbation theory. The
motivation for this development stems from [2], [12].

Theorem 4.1. In the block-matrices in (4.1), let the spectra of M and W be
separated by the interval (α, β), and let Ψ = W−1/2KM−1/2 be as in Theorem 3.1.
Then,

• for each i ∈ {1, . . . , �}, λi is not an eigenvalue of W, and

(4.3) 0 ≤ μi − λi
μi

≤ min
{
‖Ψ‖2, ‖Ψ‖

2
2

�(λi,W)

}
;

• for each k ∈ {1, . . . , w}, λ�+k is not an eigenvalue of M and

(4.4) 0 ≤ λ�+k − ωk
ωk

≤ min
{
‖Ψ‖2, ‖Ψ‖22

�(λ�+k,M)

}
.

If we have no information whatsoever about the distributions of the eigenvalues (the
spectra of M and W may interleave or even have a nonempty intersection), then we
can claim only that for each i

(4.5)
|λ̃i − λi|

λ̃i
≤ min

{
‖Ψ‖2, ‖Ψ‖22

max{�(λi,M), �(λi,W)}
}
.

Proof. The proof is based on the Schur factorizations

H− ζI =
(

I 0
K(M− ζI)−1 I

)(
M− ζI 0

0 M̂(ζ)

)(
I (M− ζI)−1K∗

0 I

)
,(4.6)

H− ζI =
(
I K∗(W − ζI)−1

0 I

)(
Ŵ(ζ) 0

0 W − ζI
)(

I 0
(W − ζI)−1K I

)
(4.7)
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with the Schur complements M̂(ζ) = W − ζI − K(M − ζI)−1K∗ (for ζ not in the
spectrum of M), Ŵ(ζ) = M− ζI−K∗(W− ζI)−1K (for ζ outside the spectrum of W).

Let λi be an eigenvalue of H such that it is not in the spectrum of W. Then the
congruence (4.7) is well defined at ζ = λi, and

H− λiI is congruent to
(

M− λiI 0
0 W − λiI

)
−
(
K∗(W − λiI)−1K 0

0 0

)
.

Since the ith eigenvalue of H − λiI is zero, Sylvester’s inertia theorem implies that
both matrices in the last relation have zero as the ith eigenvalue. This implies that
λi is the ith eigenvalue ˜̃

λi of the matrix(
M 0
0 W

)
−
(
K∗(W − λiI)−1K 0

0 0

)
≡ H̃− δH̃1.

Thus, comparing λ̃i and λi amounts to comparing λ̃i and its perturbation ˜̃
λi. Here is

the key point where our approach differs from [12]—we consider the scaled residual
with a geometric interpretation and relative eigenvalue perturbations. Recall Ψ =
W−1/2KM−1/2 from the proof of Theorem 3.1. We know that ‖Ψ‖2 < 1 and that
|λ̃i − λi| ≤ ‖Ψ‖2λ̃i. Then we can write

(4.8) H̃− δH̃1 =
(

M1/2 0
0 W1/2

){
I −

(
Ψ∗(I − λiW−1)−1Ψ 0

0 0

)}(
M1/2 0

0 W1/2

)
,

which in the case ‖Ψ∗(I −λiW−1)−1Ψ‖2 < 1 implies (as in the proof of Theorem 3.1)

(4.9)
|λ̃i − λi|

λ̃i
≤ ‖Ψ∗(I − λiW−1)−1Ψ‖2 ≤ ‖Ψ‖22

�(λi,W)
, �(λi,W) = min

k

|λi − ωk|
ωk

.

If 1 ≤ i ≤ �, and if the spectra of M and W are separated, then λ̃i = μi. Further, by
(4.2), λi ≤ μi < ω1, which means that λi is strictly left from the spectrum of W and
that the perturbation δH̃1 is positive semidefinite. Thus, λ̃i ≥ λi.

If λi does not belong to the spectrum of M, then, by a similar argument as above,
it must be the ith eigenvalue of the perturbed matrix

H̃− δH̃2 =
(

M1/2 0
0 W1/2

){
I −

(
0 0
0 Ψ(I − λiM−1)−1Ψ∗

)}(
M1/2 0

0 W1/2

)
.

In that case ‖Ψ(I − λiM−1)−1Ψ∗‖2 < 1 implies

(4.10)
|λ̃i − λi|

λ̃i
≤ ‖Ψ(I − λiM−1)−1Ψ∗‖2 ≤ ‖Ψ‖22

�(λi,M)
, �(λi,M) = min

j

|λi − μj |
μj

.

If i = �+ k, and M
(α,β)� W, then λi ≥ λ̃i = ωk > μm.

Combined with LR iterations and spectral monotonicity, Theorem 4.1 gives resid-
ual bounds for the harmonic Ritz values.

Theorem 4.2. Let χ1 ≤ · · · ≤ χ� be the inverses of the Ritz values of H−1 with
respect to the same X (i.e., the eigenvalues of (X∗H−1X)−1). Then the χj are better
approximations of the λj , i.e., in addition to the estimates of Theorem 4.1 we have

(4.11) 0 ≤ χj − λj
χj

≤ μj − λj
μj

, 1 ≤ j ≤ �.
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Similarly, the eigenvalues �1 ≤ · · · ≤ �n−� of the pencil X∗
⊥H2X⊥ − λX∗

⊥HX⊥ (i.e.,
the inverses of the Ritz values of H−1 with respect to HX⊥, also called harmonic Ritz
values) satisfy

(4.12) 0 ≤ λ�+j −�j

�j
≤ λ�+j − ωj

ωj
, 1 ≤ j ≤ n− �.

Proof. Recall, H = LL∗, M = X∗HX , K = X∗
⊥HX , W = X∗

⊥HX⊥. In the
factorization(

M K∗

K W

)
=
(√

M−K∗W−1K K∗W−1/2

0 W1/2

)(√
M−K∗W−1K 0

W−1/2K W1/2

)

reverse the order of the factors to obtain the similar matrix

H1 =
(

M−K∗W−1K
√

M−K∗W−1KK∗W−1/2

W−1/2K
√

M−K∗W−1K W + W−1/2KK∗W−1/2

)
≡
(

M↓ K∗
1

K1 W↑

)
.

Let L∗X⊥ = QR be the thin QR factorization. Then M↓ ≡ M − K∗W−1K sat-
isfies M↓ = X∗L(I − QQ∗)L∗X , where I − QQ∗ is the orthogonal projection onto
(L∗X⊥)⊥ = L−1X . Using the thin QR factorization L−1X = Q1R1, we can write
M↓ = X∗LQ1Q

∗
1L

∗X∗ = R−1
1 R−∗

1 = (X∗H−1X)−1. Thus, in the Loewner partial
order M↓ � M (M−M↓ is positive semidefinite) and by monotonicity, χj ≤ μj for all
j. Since H1 and H are similar, an application of the inclusion principle yields λj ≤ χj
for all 1 ≤ j ≤ �. Thus, we have 0 < λj ≤ χj ≤ μj , which implies (4.11). Fur-
ther, it is easily shown that W � W↑ = W−1/2X∗

⊥H2X⊥W−1/2, which means that the
eigenvalues of the pencil X∗

⊥H2X⊥ − λX∗
⊥HX⊥ dominate the eigenvalues of W, while

forced below the corresponding λj by the inclusion principle. Hence, ωj ≤ �j ≤ λ�+j ,
yielding (4.12). Finally, note that the Ritz values of H−1 with respect to HX⊥ are
the eigenvalues of the pencil X∗

⊥HX⊥ − λX∗
⊥H2X⊥.

We should also note that the error bound as well is better (in the sense of The-
orems 3.1 and 4.1) for the diagonal blocks of H1. Recall Ψ = W−1/2KM−1/2 and let
Ψ1 = W

−1/2
↑ K1M

−1/2
↓ . Then Ψ1 = W

−1/2
↑ ΨM1/2 and ‖Ψ1‖2 ≤ ‖Ψ‖2( λmax(M)

λmin(W↑) )
1/2 <

‖Ψ‖2. Moreover, the relative separation increases because λmax(M↓) ≤ λmax(M) and
λmin(W) ≤ λmin(W↑).

Remark 4.3. Note that one can also reverse the order of the factors in the
factorization

H =
( √

M 0

KM−1/2
√

W −KM−1K∗

)(√
M M−1/2K∗

0
√

W −KM−1K∗

)

and obtain diagonal blocks M↑ = M + M−1/2K∗KM−1/2 and W↓ = W−KM−1K∗.
It is interesting that separation of the spectra of M and W implies a certain

relation between Im(X) and a particular spectral subspace of H.
Proposition 4.4. Let H be Hermitian and X orthonormal such that

Ĥ =
(
X X⊥

)∗
H
(
X X⊥

)
=
(

M K∗

K W

)
, where λmax(M) < λmin(W).

If U1 = Im(U1) is the spectral subspace belonging to the � smallest eigenvalues of H,
then all principal angles between Im(X) and U1 are strictly smaller than π/4.

Proof. Pick ξ ∈ (λmax(M), λmin(W)) and note that ξI −M and W − ξI are both
positive definite. Exactly � eigenvalues of H are smaller than ξ. In the eigenvector
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matrix U =
(
U1 U2

)
of H let the � columns of U1 belong to those eigenvalues below

ξ. Since the eigenvectors are shift invariant, we can study the eigenvectors of H by
looking at Ĥ− ξI, which is in fact a quasi-definite matrix. The eigenvectors of quasi-
definite matrices have a special dominance property. If a unitary eigenvector matrix
Q of Ĥ is partitioned as

Q =
(
Q1 Q2

)
=
(
Q11 Q12

Q21 Q22

)
, Qi =

(
Q1i

Q2i

)
, i = 1, 2,

then Q1 and Q2 are determined up to postmultiplication by certain block-diagonal
unitary matrices. Further, Q∗

11Q11 − Q∗
21Q21 is positive definite, which, because Q

is unitary, implies that the minimal singular value of Q11 is bounded from below by
1/
√

2, σmin(Q11) > 1/
√

2. (See [4] for more on eigenvector structure of quasi-definite
matrices.) If the eigenvector matrix U of H is partitioned in the same way as Q,
then X∗U1 = Q11C with some unitary C. Thus, the cosines of the canonical angles
between the ranges of U1 and X are bigger than 1/

√
2.

4.2. Quadratic SVD residual bound. One obvious usage of Theorem 4.1 is
to apply it separately to A∗A, Y and AA∗, X and thus obtain quadratic residual
bound for the singular values of A. Another approach is to use A, X , and Y fused into
C = X∗AY . As in Theorem 2.10, we can reduce the problem to the square nonsingular
case, i.e., in what follows we replace A with the square block matrix (cf. (1.3))

(4.13) A′ =
(

C F
G C⊥

)
, C = X∗AY, F = X∗AY⊥, G = X∗

⊥AY, C⊥ = X∗
⊥AY⊥,

where A′ and both diagonal blocks C ∈ C�×� and C⊥ ∈ C(n−�)×(n−�) are nonsingular.
By an application of the results of section 4.1 to the cross products (A′)∗A′ and

A′(A′)∗, one easily obtains estimates for the singular values of
(
C F

)
,
(
C∗ G∗),(

G C⊥
)
,
(
F ∗ C∗

⊥
)
. The following theorem shows that we can also work with C and

C⊥.
Theorem 4.5. Let A′ be as in (4.13) and let

(4.14) (a) σmax(C) ≤ α < β ≤ σmin(C⊥), (b) ‖GC−1‖22 < 2
β − α
α

.

• Let i ∈ {1, . . . , �} and let ρi ≡ 1− σ2
i /σ

2
min(C⊥) > 0, which measures the relative

distance between σi and the singular values of C⊥.
If

ξ ≡ (tan �(X ,AY) + tan�(X ,A−∗Y))2

ρi
< 1,

then γi = σi(C) satisfies

(4.15)
|γi − σi|

γi
≤ ξ

2− ξ .

• Let i = � + k, k = 1, . . . , n − �, and let �i ≡ σ2
i /σ

2
max(C)− 1− tan2 �(X ,AY) > 0.

If

ζ ≡ tan2 �(X ,A−∗Y) +
(tan �(X ,AY) + tan�(X ,A−∗Y))2

�i
< 1,
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then

(4.16)
|σk(C⊥)− σi|

σk(C⊥)
≤ ζ

2− ζ .

Proof. Let i ∈ {1, . . . , �}. Then, by the Poincaré separation theorem and (4.14),

σi ≡ σi(A′) ≤ σi
((

C
G

))
≤ σi(C)

(
1 +
‖GC−1‖22

2

)
< β ≤ σmin(C⊥) ≤ σmin

((
F
C⊥

))
.

Thus, ρi > 0, σi is not a singular value of
(
F
C⊥

)
, and, using the congruence (4.7) as

in Theorem 4.1, we conclude that σ2
i is the ith eigenvalue of

(4.17) H̆ =
(

C∗C 0
0 C∗

⊥C⊥ + F ∗F

)
+
(
E 0
0 0

)
≡ H̃ +

(
E 0
0 0

)
,

where E = G∗G − (C∗F + G∗C⊥)(C∗
⊥C⊥ + F ∗F − σ2

i I)
−1(F ∗C + C∗

⊥G). Now write
H̆ as

H̆ =
(

C∗ 0
0

√
C∗
⊥C⊥ + F ∗F

)(
I + Ξ 0

0 I

)(
C 0
0
√

C∗
⊥C⊥ + F ∗F

)
, Ξ = C−∗EC−1,

to conclude that the ith eigenvalue λ̃i of H̃ satisfies |σ2
i − λ̃i| ≤ λ̃i‖Ξ‖2, provided that

‖Ξ‖2 < 1. The separation condition (4.14.a) implies that λ̃i = σ2
i (C), and thus

|σi − σi(C)|
σi(C)

≤ ‖Ξ‖2
2− ‖Ξ‖2 .

To compute ‖Ξ‖2, set Φ = FC−1
⊥ , Γ = GC−1 and write Ξ as

Ξ = Γ∗Γ− (Φ + Γ∗)
(
I + Φ∗Φ− σ2

i C
−∗
⊥ C−1

⊥
)−1

(Φ∗ + Γ).

Now, i ≤ � and (4.14) imply that Ξ is the difference of two semidefinite matrices, and

‖Ξ‖2 ≤ max
{
‖Γ‖22,

‖Φ + Γ∗‖22
λmin(I + Φ∗Φ− σ2

i C
−∗
⊥ C−1

⊥ )

}
,

where

λmin(I + Φ∗Φ− σ2
i C

−∗
⊥ C−1

⊥ ) ≥ λmin(I + Φ∗Φ)− σ2
i

σ2
min(C⊥)

≥ 1− σ2
i

σ2
min(C⊥)

> 0.

Now, let i = �+ k for some k ∈ {1, . . . , n− �}. As before, it can be shown that σ2
i is

the ith eigenvalue of

H̆ =
(

C∗C +G∗G 0
0 C∗

⊥C⊥

)
+
(

0 0
0 E

)
≡ H̃ +

(
0 0
0 E

)
,

where E = F ∗F − (F ∗C + C∗
⊥G)(C∗C +G∗G − σ2

i I)
−1(C∗F +G∗C⊥). Thus, the ith

eigenvalue λ̃i = σ2
k(C⊥) of H̃ satisfies |σ2

i − λ̃i| ≤ λ̃i‖Ξ‖2, provided that the norm of
Ξ ≡ Φ∗Φ− (Φ∗ + Γ)(I + Γ∗Γ− σ2

i C
−∗C−1)−1(Φ + Γ∗) is less than one. Note that

‖Ξ‖2 ≤ ‖Φ‖22 +
‖Φ + Γ∗‖22

σmin(I + Γ∗Γ− σ2
i C

−∗C−1)
≤ ‖Φ‖22 +

‖Φ + Γ∗‖22
|1− σ2

i /σ
2
max(C) + ‖Γ‖22|

.

Remark 4.6. Note that the results of Theorem 4.5 are simplified if A′ is block-
triangular (e.g., X = AY or Y = A∗X , implying that one of the two tangents is zero).
Another set of estimates can be obtained by using A′(A′)∗.
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THE RESULT OF TWO STEPS OF THE LR ALGORITHM IS
DIAGONALLY SIMILAR TO THE RESULT OF ONE STEP OF THE

HR ALGORITHM∗

JASON SLEMONS†

Abstract. Real nonsymmetric tridiagonal matrices arise in various applications. When one is
asked to find the eigenvalues of such a matrix, the QR algorithm is used, but this destroys tridiagonal
form by converting the matrix to Hessenberg form, resulting in increased storage requirements and
numerical operations. The HR algorithm, based on the HR factorization of the matrix into a (Δ, Δ1)-
orthogonal part H, where HT ΔH = Δ1, and an upper triangular part R, solves this problem. In
a result proved by Hongguo Xu, two steps of the LR algorithm are equivalent to one step of the
QR algorithm for symmetric matrices. The first object of this paper is to use the HR algorithm to
extend Hongguo Xu’s result to the nonsymmetric case. Since an HR factorization does not always
exist, so we also consider an extension to it called XHR factorization. We then prove a similar result
about it.

Key words. LR, QR, triangular factorization, HR
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1. Introduction. An attractive homework exercise in a course on matrix com-
putations is to show that for an SPD (symmetric positive definite) matrix A, the result
of one step of the QR algorithm is equal to the result of two steps of the Cholesky
LR algorithm. In [7] Xu proves that if a symmetric matrix A admits a triangular fac-
torization, then the result of one step of the QR algorithm applied to A is equivalent
to the result of two steps of the LR algorithm applied to A. The goal of this paper
is to extend Xu’s result to the nonsymmetric case. This goal seems doomed because
the QR algorithm does not preserve bandwidth while the LR algorithm does. The
way out of this difficulty is to find another algorithm that is less restrictive than QR.
This useful step was taken in 1981 by Bunse-Gerstner in [3] with the introduction of
the HR algorithm.

2. HR. The HR factorization of a matrix requires the use of matrices that when
squared yield the identity. In this paper we consider two such classes of matrices: sig-
nature matrices, the set of which is denoted by Δ, and signed symmetric permutation
matrices.

Definition 2.1. We define Ω to be an SSP (signed symmetric permutation)
matrix if it is symmetric and, for a symmetric permutation π,

Ωi,j =
{ ±1 if j = π(i),

0 otherwise .(2.1)
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For example,

Ω =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠(2.2)

is an SSP matrix. Clearly signature matrices are also SSP matrices.
In this paper Δ and Ω will denote a signature matrix and an SSP matrix, respec-

tively.
Definition 2.2. Let H ∈ Rn×n be a nonsingular matrix and let Ω0,Ω be SSP ma-

trices. We say that H is (Ω,Ω0)-orthogonal if HT ΩH = Ω0 and denote by O(Ω,Ω0)
the set of all (Ω,Ω0)-orthogonal matrices. When Δ and Δ0 are signature matrices we
define (Δ,Δ0)-orthogonal in the same way. Furthermore O(Δ,Δ0) is the set of all
H such that HT ΔH = Δ0.

Observe that if H is an element of O(Ω,Ω0), then H−1 = Ω0H
T Ω. This will be

useful in Theorem 2.5.
Definition 2.3. Let A ∈ Rn×n be a nonsingular matrix. A is Ω-symmetric if

AT Ω = ΩA, and Δ-symmetric if AT Δ = ΔA.
Definition 2.4. Let A ∈ Rn×n be a nonsingular Δ-symmetric matrix. The

HR factorization of A is A = HR with H ∈ O(Δ,Δ0), where R ∈ Rn×n is an upper
triangular matrix that has positive diagonal entries.

The HR factorization exists if and only if no principle minor of AT ΔA vanishes
and the product of the first i diagonal entries of Δ0 coincides with the sign of the ith
principle minor of AT ΔA for each i ∈ {1 . . . n}. The HR factorization is also unique.
Analyses of its use in the HR algorithm can be found in [1], [2], and [3].

2.1. HR and LR. Given the factorization of a matrix A = LU , where L is a
unit lower triangular matrix and U is an upper triangular matrix, we define the result
of one step of the LR algorithm applied to A to be the matrix given by UL. This
matrix is similar to the original by UL = L−1AL. The result of one step of the HR
algorithm, on a matrix A given its HR factorization, A = HR, is the matrix RH ,
which is similar to A by RH = H−1AH . Throughout this section we will denote the
matrix UL as Ȧ. The result of two steps of the LR algorithm applied to A means
finding Ȧ, factoring it as Ȧ = L̂Û , and then forming Ä = Û L̂. Ä is similar to Ȧ,
which is similar to A, and in turn Ä is similar to A. As we continue the algorithm,
at each step the result has the same eigenvalues as the original matrix.

The real use of the LR or HR algorithms is in their application to tridiagonal
matrices. If TG is an unreduced tridiagonal matrix, we can assume without loss of
generality that it is balanced.1 Next we consider TG = ΔT , its factorization into a
signature matrix, Δ, and a symmetric tridiagonal matrix T . This can be done by
simply factoring out ±1 from each row. TG is then Δ-symmetric, and assuming it has
the required factorizations, we can apply the following theorem to it.

Theorem 2.5. Let TG be a real nonsingular matrix and Δ a signature matrix.
Furthermore assume TG and ṪG have triangular factorizations. If TG is Δ-symmetric,
then one step of the HR algorithm applied to TG is similar by a diagonal matrix to
T̈G.

1This means TG’s ith absolute row sum equals its ith absolute column sum. Every tridiagonal ma-
trix is similar by a diagonal matrix to a balanced tridiagonal matrix, meaning |TGi,i+1 | = |TGi+1,i

|.
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Proof. If TG is Δ-symmetric, then T T
GΔ = ΔTG. T = ΔTG is a symmetric

matrix. Since TG = ΔT , the existence of a triangular factorization of TG implies the
existence of a triangular factorization for T . Let T = L1D1L

T
1 , where L1 is a unit

lower triangular matrix and D1 is a diagonal matrix. We factorize TG as

TG = ΔT
= (ΔL1Δ)(ΔD1L

T
1 ),

which is the LR factorization of TG. The result of one step of the LR algorithm
applied to TG is

ṪG = (ΔD1L
T
1 )(ΔL1Δ).(2.3)

Since ṪG permits triangular factorization then so does LT
1 ΔL1. We decompose

LT
1 ΔL1 = L2D2L

T
2 . Given LT

1 ΔL1 = L2D2L
T
2 we can now explicitly separate the

triangular factors of ṪG to get

ṪG = ΔD1L
T
1 ΔL1Δ

= ΔD1L2D2L
T
2 Δ

= (ΔD1L2D
−1
1 Δ)(ΔD1D2L

T
2 Δ).(2.4)

The matrix ΔD1L2D
−1
1 Δ is unit lower triangular and ΔD1D2L

T
2 Δ is an upper tri-

angular matrix so (2.4) is the LR factorization of ṪG. Applying another step of the
LR algorithm to ṪG we get

T̈G = (ΔD1D2L
T
2 Δ)(ΔD1L2D

−1
1 Δ).(2.5)

The matrix T̈G denotes the result of two steps of the LR algorithm applied to TG.
It remains to show that (2.5) is diagonally similar to one step of the HR algorithm
applied to TG. For this purpose, we rewrite D2 = D̄2Δ2D̄2, where D̄2 > 0 is a
diagonal matrix, and Δ2 is a signature matrix. This allows us to define the matrix Q
as L1L

−T
2 D̄−1

2 . Notice that

D̄−1
2 L−1

2 LT
1 ΔL1L

−T
2 D̄−1

2 = Δ2,

QT ΔQ = Δ2,(2.6)

implies Q is (Δ,Δ2)-orthogonal. Another factorization of Q, coming from (2.6), is

Q = ΔQ−T Δ2

= ΔL−T
1 L2D̄2Δ2.(2.7)

Next, we gradually manipulate (2.5) to introduce Q and Q−1. First replace the
diagonal matrix ΔD1D̄2Δ2 with D. Then from (2.5) and (2.7) we have

T̈G = DD̄2L
T
2D1L2D̄2Δ2D−1

= D(D̄2L
T
2 L

−1
1 )(L1D1L2D̄2Δ2)D−1

= DQ−1L1D1(LT
1 L

−T
1 )L2D̄2Δ2D−1

= DQ−1(L1D1L
T
1 )(L−T

1 L2D̄2Δ2)D−1

= DQ−1TΔQD−1

= D(ΔQ)−1TG(ΔQ)D−1.(2.8)
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Since Δ3 = Δ, it follows that (ΔQ)T Δ(ΔQ) = Δ2, so ΔQ is also (Δ,Δ2)-orthogonal.
Finally we manipulate TG = ΔT into its HR factorization,

TG = ΔL1D1L
T
1

= ΔL1(L−T
2 D̄−1

2 )(D̄2L
T
2 )D1L

T
1(2.9)

= ΔQ(D̄2L
T
2D1L

T
1 ).

Write D1 as |D1|sign(D1) to find

TG = ΔQsign(D1)[sign(D1)D̄2L
T
2 sign(D1)]|D1|LT

1 .(2.10)

Notice that H = ΔQsign(D1) is (Δ,Δ2)-orthogonal and that R =
sign(D1)D̄2L

T
2 sign(D1)]|D1|LT

1 is an upper triangular matrix with positive diago-
nal elements. Therefore (2.10) exhibits the HR factorization of TG. Using (2.8) we
discover

T̈G = sign(D1)DH−1TGH(sign(D1)D)−1.(2.11)

The result of one step of the HR algorithm applied to TG is H−1TGH = RH . Note
that (2.11) exhibits the diagonal similarity mentioned in the statement of the theorem
between T̈G and this matrix.

In an effort to extend this result to multiple steps of the HR algorithm we define
sign(D1)D = D1, H = H1, and X = D−1

1 T̈GD1 = H−1
1 TGH1, using the same notation

as in the proof of Theorem 2.5. Since H1 ∈ O(Δ,Δ2) and H−1
1 TGH1 = Δ2H

T
1 TH1, X

is Δ2-symmetric. Therefore we can apply the HR algorithm to X and get H−1
2 XH2,

where H2 ∈ O(Δ2,Δ3). By Theorem 2.5,

Ẍ = D2H
−1
2 XH2D−1

2 ,

where Ẍ is the result of two steps of the LR algorithm applied to X , and D2 is a
diagonal matrix. It is a straightforward exercise to show that

Ẍ = D−1
1

¨̈TGD1,

where ¨̈TG is the result of four steps of the LR algorithm applied to TG. This result
then leads to

¨̈TG = D1D2H
−1
2 XH2D−1

2 D−1
1

= D1D2H
−1
2 H−1

1 TGH1H2D−1
2 D−1

1 .

Since H2 ∈ O(Δ2,Δ3) and H1 ∈ O(Δ,Δ2) then H−1
1 = Δ2H

T
1 Δ and H−1

2 =
Δ3H

T
2 Δ2. Therefore

H−1
2 H−1

1 TGH1H2 = Δ3(H1H2)TT (H1H2).

The result of two steps of the HR algorithm, H−1
2 H−1

1 TGH1H2, is Δ3-symmetric
and so we could apply the theorem yet again. One can prove that the result, on a
nonsingular Δ-symmetric matrix, of 2k steps of the LR algorithm is diagonally similar
to the result of k steps of the HR algorithm on the same matrix, provided that at
each stage the factorizations exist.
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2.2. XHR and SSPLR. Unfortunately the HR factorization does not always
exist for a matrixA. The condition thatH be an element ofO(Δ,Δ0) is too restrictive.
Fortunately if the space is expanded to H ∈ O(Ω,Ω0) such a factorization always
exists; see [6] and [4].

Theorem 2.6. Let A be nonsingular, and let Ω be an SSP matrix. The factor-
ization A = HR always exists for some H ∈ O(Ω,Ω0), where Ω0 is an SSP matrix,
and some R ∈ Rn×n, an upper triangular matrix with positive diagonal entries. Such
a factorization is called the XHR factorization of A with respect to Ω. Moreover Ω0

is uniquely determined by A and Ω.
Proof. See Liu [4].
Is there an algorithm based on triangular factorization other than the LR algo-

rithm that is related to a step of the XHR algorithm and not the HR algorithm?
Since every nonsingular matrix has an XHR factorization, the algorithm and the
triangular factorization it comes from will be more flexible than the LR factorization.
For this reason we relax the conditions on our triangular factors. The following the-
orem is very much like the modified Bruhat decomposition in [5], but differs in that
it is specific to SSP matrices.

Theorem 2.7. If A is a real nonsingular symmetric matrix, then A can be
decomposed as A = LΩLT . Here L is unit lower triangular and Ω = DΩ̄D, where D
is a positive diagonal matrix and Ω̄ is an SSP matrix. In addition, Ω̄ is unique. We
will call this an SSPLR factorization.

Proof. This is slightly modified from the factorization in [4], but the proof is the
same. See Liu [4].

We define the SSPLR factorization of a general matrix A as a factorization of A
into LΩU , but this may not always exits. In this context L is a unit lower triangular
matrix, U is an upper triangular matrix, and Ω is an SSP matrix. The result of a
single step of the SSPLR algorithm applied to A is the matrix Ȧ = ΩUL. Notice that
Ȧ = LAL−1, so the eigenvalues of Ȧ and A are the same. The SSPLR factorization
is a triangular factorization that is more flexible than the LR factorization since it
always exists for nonsingular symmetric matrices. The XHR factorization is a similar
generalization of HR. We define a single step of the XHR algorithm applied to a
matrix A given its XHR factorization A = HR to be the matrix RH .

Now the question of whether or not a single step of the XHR algorithm is equiv-
alent to a combination of steps of the SSPLR and LR algorithms can be answered.

Theorem 2.8. Let TG be a real nonsingular matrix with an LR factorization,
and let Δ be a signature matrix. If TG is Δ-symmetric, then the result of one step
of the XHR algorithm applied to TG is similar, by an SSP matrix times a diagonal
matrix, to the result of one step of the LR algorithm applied to A followed by one step
of the SSPLR algorithm.

Proof. As before, we can write either an unreduced tridiagonal matrix or a Δ-
symmetric matrix TG as ΔT with T symmetric. Since TG has an LR factorization we
may factor T into unit triangular matrices L1 and LT

1 , and a diagonal matrix D1 as
L1D1L

T
1 . Consider one step of the LR algorithm applied to TG = ΔT . We get

TG = ΔT
= ΔL1ΔΔD1L

T
1 ,

ṪG = ΔD1L
T
1 ΔL1Δ.(2.12)

The SSPLR factorization of the symmetric matrix LT
1 ΔL1 is L2Ω2L

T
2 . The

matrix L2 is unit lower triangular and Ω2 = D̄2Ω̄2D̄2, where D̄2 is a positive diagonal
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matrix and Ω̄2 is an SSP matrix. This factorization always exists by Theorem 2.7.
We take another step to get

ṪG = ΔD1L2Ω2L
T
2 Δ

= (ΔD1L2D
−1
1 Δ)(ΔD1Ω2L

T
2 Δ),(2.13)

T̈G = (ΔD1Ω2L
T
2 Δ)(ΔD1L2D

−1
1 Δ).(2.14)

Notice that ΔD1L2D
−1
1 Δ is a unit lower triangular matrix and ΔD1Ω2L

T
2 Δ can

be written as an SSP matrix times an upper triangular matrix. Thus, (2.13) exhibits
the SSPLR factorization of the matrix ṪG. T̈G is the result of one step of the
SSPLR algorithm applied to ṪG. It remains to show that T̈G is similar to the result
of one step of the XHR algorithm, as opposed to one step of the HR algorithm. We
manipulate the triangular factorization of TG by inserting the identity to get its XHR
factorization,

TG = ΔL1(L−T
2 D̄−1

2 sign(D1))(sign(D1)D̄2L
T
2 )D1L

T
1 ,(2.15)

where sign(D1)|D1| = D1. Observe that R = sign(D1)D̄2L
T
2D1L

T
1 is an upper

triangular matrix with positive diagonal elements. The rest of the factorization above
is H since

(ΔL1L
−T
2 D̄−1

2 sign(D1))T Δ (ΔL1L
−T
2 D̄−1

2 sign(D1))
= sign(D1)QT ΔΔΔQsign(D1)
= sign(D1)QT ΔQsign(D1)
= sign(D1)Ω̄2sign(D1) = Ω3.

We use the definition of Q from the proof of Theorem 2.5. If H = ΔL1L
−T
2

D̄−1
2 sign(D1), then the above calculation implies H is (Δ,Ω3)-orthogonal. This fact

along with (2.15) implies that H and R are the XHR factors of TG. Since Ω3 is
an SSP matrix and not a signature matrix this cannot be an HR factorization. It
remains to show that H−1TGH is similar, by an SSP matrix times a diagonal matrix,
to T̈G. Evaluating (2.14) we get

T̈G = (ΔD1Ω2L
T
2 Δ)(ΔD1L2D

−1
1 Δ)

= ΔD1D̄2Ω̄2D̄2L
T
2D1L2D

−1
1 Δ

since Ω2 = D̄2Ω̄2D̄2. Inserting sign(D1)2 and L−1
1 Δ2L1 we get

T̈G = ΔD1D̄2Ω̄2sign(D1)(sign(D1)D̄2L
T
2 L

−1
1 Δ)ΔL1D1L2D

−1
1 Δ

= ΔD1D̄2Ω̄2sign(D1)H−1ΔL1D1L2D
−1
1 Δ

because H−1 = sign(D1)D̄2L
T
2 L

−1
1 Δ. Define D = sign(D1)Ω̄2D̄

−1
2 D−1

1 Δ and D−1 =
ΔD1D̄2Ω̄2sign(D1) to get

T̈G = D−1H−1ΔL1D1L2D̄2Ω̄2sign(D1)D
= D−1H−1(ΔL1D1L

T
1 )(L−T

1 L2D̄2Ω̄2sign(D1))D.
As a result of HT ΔH = Ω3 we also know that H = ΔH−T Ω3 This implies

T̈G = D−1H−1(ΔL1D1L
T
1 )HD,(2.16)

= D−1H−1TGHD.
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The similarity matrix is D, which can be written as an SSP matrix times a diagonal
matrix.

Unfortunately H−1TGH = Ω3H
TTH is an Ω3-symmetric matrix but Ω3 is not a

signature matrix, and so we cannot apply this theorem again in the way we did for
Theorem 2.5.
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PERTURBATION SPLITTING FOR MORE
ACCURATE EIGENVALUES∗

RUI RALHA†

Abstract. Let T be a symmetric tridiagonal matrix with entries and eigenvalues of different
magnitudes. For some T , small entrywise relative perturbations induce small errors in the eigenvalues,
independently of the size of the entries of the matrix; this is certainly true when the perturbed matrix
can be written as T̃ = XT TX with small ||XT X − I||. Even if it is not possible to express in this
way the perturbations in every entry of T , much can be gained by doing so for as many as possible
entries of larger magnitude. We propose a technique which consists of splitting multiplicative and
additive perturbations to produce new error bounds which, for some matrices, are much sharper
than the usual ones. Such bounds may be useful in the development of improved software for
the tridiagonal eigenvalue problem, and we describe their role in the context of a mixed precision
bisection-like procedure. Using the very same idea of splitting perturbations (multiplicative and
additive), we show that when T defines well its eigenvalues, the numerical values of the pivots in the
usual decomposition T − λI = LDLT may be used to compute approximations with high relative
precision.

Key words. symmetric tridiagonal matrices, eigenvalues, perturbation theory

AMS subject classifications. 15A15, 15A09, 15A23

DOI. 10.1137/070687049

1. Introduction. Let A and E be n-by-n symmetric matrices. Let λ1 ≤ · · · ≤
λn and λ̃1 ≤ · · · ≤ λ̃n be the eigenvalues of A and Ã = A + E, respectively. Then
|λk − λ̃k| ≤ ‖E‖2. This is a classical result in the perturbation theory (see [44,
pp. 101–102]), which is usually referred to as Weyl’s theorem (see, for instance, [9,
p. 198]).

Weyl’s theorem can be used to get error bounds for the eigenvalues computed
by any backward stable algorithm since such an algorithm computes eigenvalues λ̃k
that are the exact eigenvalues of Ã = A + E, where ‖E‖2 = O(ε)‖A‖2. (Here and
throughout the paper we will use ε to denote the rounding error unit.) This is a
very satisfactory error bound for large eigenvalues, especially those of magnitude
close to ‖A‖2, but eigenvalues much smaller than ‖A‖2 will have fewer correct digits
(eventually none in extreme cases).

The decade starting in 1990 was fertile in new results on bounds for relative errors
of eigenvalues and several authors have contributed to this [1], [4], [5], [16], [17], [22],
[32], [33], [34], [35], [42]. In [22], Ipsen presents a good survey of the work done until
1998. Not surprisingly, many of the published results are for the Hermitian positive
definite case. For an Hermitian indefinite matrix A and, more generally, for normal
matrices, the Hermitian positive-semidefinite factor H in the polar decomposition
A = HU , with U unitary, may be used to derive bounds for the eigenvalues of A (see
[22, Theorems 2.4 and 2.10] and the references therein).

The first relative perturbation bound for eigenvalues is due to Ostrowski. Let Â =
XAX∗, with X nonsingular, be a multiplicative perturbation of an Hermitian matrix
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A; for the eigenvalues λk and λ̂k, of A and Â, respectively, we have [21, Theorem
4.5.9]

λk · λmin (XX∗) ≤ λ̂k ≤ λk · λmax (XX∗) .

This result is at the heart of high relative accuracy theory for the eigenvalues of
Hermitian matrices (and singular values). An immediate consequence, for real sym-
metric matrices, is the following (Theorem 2.1 in [16]): let A have eigenvalues λk and
Â = XTAX have eigenvalues λ̂k. Then |λ̂k − λk| ≤ |λk| ||XTX − I||2. Following
Demmel [9, p. 208], we will refer to this result as the relative Weyl’s theorem.

Some types of matrices are known to define well their eigenvalues and/or singular
values. In 1990, Demmel and Kahan [4] showed that small relative perturbations in
the entries of any bidiagonal matrix cause small relative errors in the singular values,
independent of their magnitudes. They also proposed the zero-shifted QR algorithm
to compute such singular values with high relative accuracy. Another remarkable
development in this area of fast and highly accurate computation of the singular
values of bidiagonal matrices was the dqds algorithm [18], [38]. Furthermore, any
matrix with an acyclic graph (bidiagonals and many others) defines well its singular
values, and these may be computed to high accuracy using bisection [6].

In [11], Demmel et al. showed that it is possible to compute efficiently a highly
accurate SVD of a dense rectangular matrix A from a rank-revealing decomposition
(RRD) A = XDY T , i.e., a decomposition where D is diagonal and X and Y are
well conditioned (but otherwise arbitrary); furthermore, also in [11], a variety of
matrix classes were described for which a special form of Gaussian elimination with
complete pivoting does provide the necessary accuracy of the computed factors X̃, D̃,
and Ỹ . For some structured matrices (these include, among others, Cauchy matrices,
Vandermonde matrices, M-matrices, and totally nonnegative matrices), forward stable
algorithms have been proposed for the computation of highly accurate RRD. See [10],
[11], [12], [15], and [26], [27], [28], [29].

Congruence transformations play an important role in the perturbation theory
of the eigenvalues of an Hermitian positive-definite matrix A (see [22, Corollary 2.2]
and [34, Theorem 2.4]). For scaled diagonally dominant (sdd) matrices, diagonal
congruence transformations may be used to pull the grading out of the matrix [1], [5],
[35], [9]. If A is indefinite, the error bounds are the same as the error bounds for the
eigenvalues of the best scaled version of the positive-definite polar factor of A (see
[22, Corollary 2.6] and [42, Theorem 2.13]).

Symmetric tridiagonal matrices do not always define well their eigenvalues, not
even in the positive-definite case. In this paper, we focus our attention on symmetric
tridiagonal matrices with entries of different magnitudes. Our matrices, however, are
not necessarily sdd.

Suppose that we are given a symmetric matrix A which has entries of different
orders of magnitude and assume small relative perturbations of size O(ε) in its entries
(or, at least, small relative perturbations in the entries of larger size). With Ã = A+E,
it is clear that ‖E‖2 is proportional to the size of the largest entries in A, and the
classical error bound, provided by Weyl’s theorem, may not be very satisfactory for
small eigenvalues, if they arise. For this reason, we attack Ã with a congruenceXT ÃX
to get Â = A+F with ‖F‖2 < ‖E‖2 and ||XTX−I||2 of size O(ε); the relative Weyl’s
theorem gives

(1.1) |λ̃k − λ̂k| ≤ ||XTX − I||2 · |λ̃k|,
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and we get

(1.2) |λ̃k − λk| ≤ |λ̃k − λ̂k|+ |λ̂k − λk| ≤ ||XTX − I||2 · |λ̃k|+ ‖F‖2 ,
which, in some cases, is a much sharper bound than

(1.3) |λ̃k − λk| ≤ ‖E‖2 .
In the following sections, we exploit this idea in the context of symmetric tridi-

agonal matrices, although it can also be applied to dense symmetric matrices. In
section 2, we analyze the perturbation of the eigenvalues of affine transformations of
Golub–Kahan matrices. Section 3 contains the main perturbation result, Theorem 3.1,
which states that a symmetric tridiagonal matrix T , with diagonals aj , defines well
the eigenvalues whose magnitude is not much smaller than max |aj |. In section 4 we
present a detailed numerical example to show that for matrices with entries of different
magnitudes, depending upon the location of the entries of larger size, the eigenvalues
may or may not be all well defined. In section 5 we describe a fast procedure that
will produce an estimate for the value of ‖F‖2 in the bound (1.2). In sections 6 and
7 we present applications of our perturbation results; in section 6 we show that the
numerical values of the pivots in the decomposition T − λI = LDLT , computed in
the usual way, may be used to determine the eigenvalues with high relative accuracy,
if the matrix T defines them well, and in section 7 we show that our results are useful
in the context of a mixed precision bisection algorithm.

2. Constant main diagonal. It is well known that, for n even, the eigenvalues
of the Golub–Kahan matrix

(2.1) T (0) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 b1
b1 0 b2

b2 0
. . .

. . .
. . . bn−1

bn−1 0

⎤⎥⎥⎥⎥⎥⎥⎦
are

(2.2) −σ1 ≤ · · · ≤ −σn
2
≤ σn

2
≤ · · · ≤ σ1,

where σk (k = 1, . . . , n2 ) are the singular values of

(2.3) B =

⎡⎢⎢⎢⎢⎣
b1 b2

b3
. . .
. . . bn−2

bn−1

⎤⎥⎥⎥⎥⎦
(see, for instance, Lemma 5.5 in [9]). This relation may be used in both directions; that
is, one may compute singular values of B as the corresponding positive eigenvalues of
T (0) or one may compute eigenvalues of T (0) from the corresponding singular values
of B. This last option may also be used for the computation of the eigenvalues of
a skew-symmetric tridiagonal matrix with high relative accuracy (see [41]). We will
therefore be interested in matrices with the structure given in (2.1), with n even or
odd. We have the following result.
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Proposition 2.1. Let T (0) be as given in (2.1), and let D2k−1 (k = 1, . . . , n2
if n is even and k = 1, . . . , n+1

2 if n is odd) and D2k (k = 1, . . . , n2 if n is even and
k = 1, . . . , n−1

2 if n is odd) be the principal minors of T (0) of order odd and even,
respectively. We have

(2.4) D2k−1 = 0, D2k = (−1)k ·
∏k

j=1
b22j−1.

Thus, for n even, T (0) is singular if and only if b2j−1 = 0 for some j, 1 ≤ j ≤ k; if
n is odd, then Dn = 0; i.e., T (0) is always singular.

Proof. The proof follows easily from D1 = 0, D2 = −b21, and the relation Dj =
−b2j−1 ×Dj−2 for j ≥ 3.

When n is odd, we may keep relating T (0) to a bidiagonal matrix. For this, we
construct a matrix of even order by adding a row and a column of zeros to T (0). The
resulting matrix has a double eigenvalue equal to zero. The corresponding bidiagonal
in (2.3) is now replaced by the singular matrix with diagonal entries b1, . . . , bn−2,
bn = 0 and superdiagonal entries b2, . . . , bn−1.

Small relative perturbations of the off-diagonal pairs of T (0) may be expressed in
terms of a congruence transformation XTT (0)X with X diagonal very close to iden-
tity (see [1], [16], and [22, Example 5.1]). Therefore, T (0) defines well its eigenvalues
(even when n is odd, because the zero eigenvalue is unchanged by perturbations in
the off-diagonal entries). From [9, Theorem 5.13] we may conclude the following.

Corollary 2.2. Let T (0) be as given in (2.1), and let T̃ (0) be the tridiagonal
matrix which results from T (0) by replacing each bk with b̃k = bk(1 + δk) with |δk| ≤
ε� 1. Let λ1 ≤ · · · ≤ λn be the eigenvalues of T (0) and λ̃1 ≤ · · · ≤ λ̃n the eigenvalues
of T̃ (0). For every eigenvalue (even if zero) we can write

(2.5) |λ̃k − λk| ≤ ξ (n, ε) |λk| ,
where

(2.6) ξ (n, ε) = (2n− 1)ε+O
(
ε2
)
.

Now, we consider affine transformations of T (0). If T (c) is a symmetric tridiagonal
matrix whose main diagonal entries are equal to a constant c, then T (0) = T (c)− cI
has zeros in the main diagonal and Corollary 2.2 does apply. We have the following.

Proposition 2.3. Let λk(0) and λk(c) be the eigenvalues of T (0) and T (c) =
T (0) + cI, respectively; let λ̃k(0) be the eigenvalues of T̃ (0), as defined in Corollary
2.2, and λ̃k(c) the eigenvalues of T̃ (c) = T̃ (0) + cI. For λk(c) �= 0 we have

(2.7) |λ̃k(c)− λk(c)| ≤ ξ(n, ε)
∣∣∣∣1− c

λk(c)

∣∣∣∣ |λk(c)| ,
where ξ(n, ε) is as given in (2.6).

Proof. Since λk(c) = λk(0) + c and λ̃k(c) = λ̃k(0) + c, we have λ̃k(c) − λk(c) =
λ̃k(0)− λk(0); using (2.5), we get

|λ̃k(c)− λk(c)| ≤ ξ(n, ε) |λk(0)| ,
which, for λk(c) �= 0, can be written as

(2.8) |λ̃k(c)− λk(c)| ≤ ξ(n, ε)
∣∣∣∣λk(0)
λk(c)

∣∣∣∣ |λk(c)| .
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Replacing λk(0) with λk(c)− c gives (2.7).
Small relative perturbations in the off-diagonal entries of T (c) cause relative errors

in the eigenvalues which depend upon the ratio

(2.9)
λk(0)
λk(c)

= 1− c

λk(c)
.

Therefore, we see that the relative errors will be small except for those eigenvalues
λk(c) such that |λk(0)| � |λk(c)|, i.e.,

(2.10) |λk(c)| � |c| .

Furthermore, (2.7) shows that the relative error of λ̃k(c) approaches zero when λk(c)
gets close to c.

Example 1. Consider the matrix

(2.11) T (1) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 106

106 1 1
1 1 1

1 1 1
1 1 106

106 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

The function eig of MATLAB (version 7.4) produces the following approximations for
the eigenvalues (note that with a previous version of MATLAB we got much worse
values for λ̃3(1) and λ̃4(1)):

λ̃1(1) = −9.999990000005000e+005, λ̃2(1) = −9.999990000005000e+005,
λ̃3(1) = 1.139421890172798e−012, λ̃4(1) = 1.999999999999141e+000,
λ̃5(1) = 1.000001000000500e+006, λ̃6(1) = 1.000001000000500e+006.

The classical error analysis gives us, with ε = 2−52, for all k = 1, . . . , 6,

|λ̃k(1)− λk(1)| ≤ O(ε) ‖T (1)‖2 = O(10−10).

Thus, for k �= 3 and k �= 4, λ̃k(1) is an accurate approximation of the corresponding
true eigenvalue λk(1), and λ̃4(1) has at least 9 or 10 correct decimal digits. Interest-
ingly, we may improve upon the computed values λ̃3(1) and λ̃4(1). Since we know the
exact value det(T (1)) = 2× 1012 − 1, we use the relation

λ3(1) = det(T (1))/
6∏

k=1,k �=3

λk(1)

to compute an approximation

(2.12) λ3(1) = fl

⎛⎝det(T (1))/
6∏

k=1,k �=3

λ̃k(1)

⎞⎠
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which has at least nine correct decimal significant digits. We have

λ3(1) = det(T (1))/

⎛⎝ 6∏
k=1,k �=3

λk(1) (1 + φk)

⎞⎠ (1 + κε)

= λ3(1) ·
⎛⎝(1 + κε)

6∏
k=1,k �=3

(1 + φk)
−1

⎞⎠ ,

where φk for k �= 3 is the relative error in λ̃k(1) and the term κε, with κ ≤ 5.05,
accounts for the rounding errors in the four multiplications and one division. Since
the relative errors φk in the four eigenvalues of larger size are all bounded by O

(
2−52

)
,

the size of the relative error in λ3(1) is determined essentially by the size of φ4,
which we know to be bounded by O

(
10−10

)
. The computation of (2.12) in MATLAB

produces λ3(1) = 9.999999999999297e−013. Since the interval [λ3(1), λ4(1)] of the
true eigenvalues is known to be centered in c = 1, we compute λ4(1) = 2 − λ3(1) =
1.999999999999000e+000 with 16 correct digits. Again, we may use (2.12), replacing
λ̃4(1) with λ4(1) to compute λ3(1) = 1.000000000000000e−012 with a relative error
bounded by O(ε). Now, according to Proposition 2.3, if MATLAB could deliver the
exact eigenvalues of a matrix differing from T (1) by relative perturbations of size O(ε)
in the off-diagonal entries,1 λ̃4(1) would be closer to λ4(1), and for λ̃3(1) we would
have

|λ̃3(1)− λ3(1)| ≤
∣∣∣∣1− 1

λ3(1)

∣∣∣∣O(ε) |λ3(1)| ≈ 10−4 |λ3(1)| ,

and such approximation, although not as good as λ3(1) or even λ3(1), is significantly
better than the computed λ̃3(1). It is also worth mentioning that in MATLAB, svd(T)
and [L,U]=lu(T); eig(U*L), where T is the matrix in our example, both produce
approximations λ̃4(1) and λ̃3(1) which do satisfy the error bound (2.7).2

We conclude this section by emphasizing that the matrix in our example is not
sdd and the theory of Barlow and Demmel does not apply here.

3. A perturbation theory result. In the previous section, we showed that
small relative changes in the off-diagonal entries of a symmetric tridiagonal matrix
with constant main diagonal c do not cause too much perturbation in those eigenvalues
of magnitude not much smaller than the constant |c|. To this end, we have used a
simple affine transformation of the given matrix to produce a Golub–Kahan matrix
whose relative perturbations in the off-diagonal pairs may be entirely expressed in
terms of a congruence transformation XTT (0)X , with X very close to identity. A
similar result may be obtained without the affine transform by directly expressing
the perturbations in the off-diagonal entries in terms of a congruence transformation.
This is a more general procedure since it applies to any symmetric tridiagonal matrix.
We have the following theorem.

1This is what the bisection method can actually deliver; see section 6.
2Zlatko Drmač has brought to our attention the accuracy of these approximations.
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Theorem 3.1. Let

(3.1) T =

⎡⎢⎢⎢⎢⎣
a1 b1

b1
. . .

. . . . . . bn−1

bn−1 an

⎤⎥⎥⎥⎥⎦
and

(3.2) T̃ =

⎡⎢⎢⎢⎢⎣
a1 (1 + η1) b1 (1 + δ1)

b1 (1 + δ1)
. . .

. . . . . . bn−1 (1 + δn−1)
bn−1 (1 + δn−1) an (1 + ηn)

⎤⎥⎥⎥⎥⎦ ,

where δk and ηk are tiny quantities such that |δk| ≤ ε and |ηk| ≤ ε. Denoting by λk
and λ̃k the ordered eigenvalues of T and T̃ , respectively, the following relation holds,
for each k = 1, . . . , n:

(3.3) |λk − λ̃k| < 2.02nε
(

max
j
|aj|+ |λ̃k|

)
.

Proof. We use a diagonal congruence to account for all the off-diag perturbations
and then just see what it does to the diagonal entries: lo and behold, it makes just a
few more changes from what was there initially. Concretely, if we write

(3.4) T̂ = XT T̃X

with X diagonal, X(1, 1) = 1, X(2, 2) = (1 + δ1)
−1, and

(3.5) X(j, j) = (1 + δj−1)
−1
X(j − 1, j − 1)−1, j = 3, . . . , n,

we get T̂ (i, j) = T (i, j) for i �= j, T̂ (1, 1) = a1 (1 + η1), and

(3.6) T̂ (j, j) = aj (1 + ηj) ·X(j, j)2, j = 2, . . . , n.

We write

(3.7) X(j, j)2 = 1 + φj ,

and since φ1 = 0 and |δj | ≤ ε, from (3.5), assuming that 2 (n− 1) ε ≤ 0.01, we get

(3.8) |φj | ≤ 2.02 (j − 1) ε, j = 2, . . . , n,

and ||XTX − I||2 ≤ maxj |φj | < 2.02nε. From (3.6)–(3.8) and taking into account
that |ηj | ≤ ε, we may write, for each j = 1, . . . , n, assuming that (2n− 1) ε ≤ 0.01,
T̂ (j, j) = aj (1 + θj) with |θj | ≤ 1.01 (2j − 1) ε. Therefore, we have T̂ = T + F with
F a diagonal matrix such that

(3.9) ‖F‖2 = max
j
|aj | |θj| < 2.02nε ·max

j
|aj | .
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Applying the relative Weyl’s theorem to matrices T̂ and T̃ in (3.4), we get |λ̂k− λ̃k| ≤
|λ̃k| · ||XTX − I||2, and we may finally write |λk − λ̃k| ≤ |λk − λ̂k| + |λ̂k − λ̃k| ≤
‖F‖2 + |λ̃k| · ||XTX − I||2, which, after some simplifications, gives (3.3).

If λ̃k �= 0, the bound (3.3) may be written as

(3.10)

∣∣∣λk − λ̃k∣∣∣∣∣∣λ̃k∣∣∣ < 2.02nε

⎛⎝1 +
max
j
|aj |∣∣∣λ̃k∣∣∣

⎞⎠ .

Part of the novelty of Theorem 3.1 for relative perturbation theory is that, as expressed
in (3.10), a general symmetric tridiagonal matrix T defines well those eigenvalues
whose magnitude is not much smaller than max |aj|.

For the case of a matrix with zeros in the main diagonal, we get from (3.3)

(3.11) |λk − λ̃k| ≤ 2.02nε|λ̃k|
and we note that this is essentially the bound given in (2.5), with |λk| replaced with
|λ̃k|.

It must be observed that there are many distinct congruences X which are able to
produce T̂ with unperturbed off-diagonal entries. We have used X with X(1, 1) = 1,
but it is possible to use a different X , setting X(k, k) = 1, for any k = 1, . . . , n;
then, we choose the values of X(k − 1, k − 1), . . . , X(1, 1) to remove perturbations
from entries b̃k−1, . . . , b̃1, by this order, and X(k + 1, k + 1), . . . , X(n, n) to remove
perturbations from entries b̃k, . . . , b̃n−1. In particular, by choosing k = n/2 we may
reduce the bounds (3.3) and (3.10) by a factor of 2.

Finally, we remark that there is a diagonal X which, besides the off-diagonal
perturbations, also expresses, in multiplicative terms, the perturbation in any diagonal
entry ãk: X(k, k) is chosen to remove the perturbation in ãk, and the remaining entries
of X are determined as we have just described. So, in the bounds (3.3) and (3.10)
we may replace max |aj | with the second largest absolute value of the diagonal entries
of T .

4. More general perturbations: An example. There are matrices for which
the bound (3.10) is sharp. This is the case with matrices of constant main diagonal
c since, as we have seen in section 2, the relative error in λ̃k(c) depends upon the
ratio c/λk(c). In discussing the relative errors of small eigenvalues computed with the
bisection method, Wilkinson also observed (see [44, p. 307]) that the method (which
we know to be able to compute accurately the eigenvalues if the matrix defines them
well) could not compute accurately the small eigenvalues of such a matrix.

However, we know that there are other matrices for which the bound (3.10) is too
pessimistic. This is the case of the sdd matrices. We now show that there are other
matrices, not sdd, which define well their eigenvalues, even in cases where their size
is much smaller than that of some of the diagonal entries.

In the previous section, we expressed the perturbations in the off-diagonal entries
in terms of a diagonal congruence,

(4.1) T̂ = XT T̃X.

Although X does not account for the perturbations in the diagonal entries, the key
point of our analysis is based upon the fact that

(4.2) T̂ = T + F
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with ‖F‖2 independent of the size of the off-diagonal entries.
In a more general situation, T may have entries of different order of magnitude,

and we are interested in expressing the perturbations in the entries of larger size,
independently of their location, in terms of the transformation expressed in (4.1). We
point out that in the general case, F in (4.2) does not need to be a diagonal matrix.
Again, we start with a numerical example to motivate the general procedure that will
be proposed in the next section.

Example 2. Consider the matrices

T1 =

⎡⎣ 1 105 0
105 105 105

0 105 1

⎤⎦ , T2 =

⎡⎣ 105 105 0
105 105 1
0 1 1

⎤⎦ .
The approximations for the eigenvalues of T1 and T2, computed with MATLAB, are

λ1(T1) = −9.999933333407408e+004,
λ2(T1) = 1.000000000014616e+000,
λ3(T1) = 2.000003333340741e+005

and

λ1(T2) = −3.660259320914954e−001,
λ2(T2) = 1.366023432085007e+000,
λ3(T2) = 2.000000000025000e+005.

In both cases, we know that the absolute errors in these approximations have a bound
of size O

(
10−11

)
because the norm of the matrices is O

(
105
)

and ε is O
(
10−16

)
. To

gain insight into the influence of perturbations, we used again the function eig of
MATLAB to compute the eigenvalues of the matrices

T̃1 =

⎡⎣ 1(1 + η1) 105(1 + δ1) 0
105(1 + δ1) 105(1 + η2) 105(1 + δ2)

0 105(1 + δ2) 1(1 + η3)

⎤⎦
and

T̃2 =

⎡⎣ 105(1 + η′1) 105(1 + δ′1) 0
105(1 + δ′1) 105(1 + η′2) 1(1 + δ′2)

0 1(1 + δ′2) 1(1 + η′3)

⎤⎦
with ηk, η′k, δk, and δ′k randomly generated, all bounded by ε = 10−7 in absolute value.
We got the errors

λ1(T1)− λ1(T̃1) ≈ 3.1e−008,
λ2(T1)− λ2(T̃1) ≈ −9.9e−009,
λ3(T1)− λ3(T̃1) ≈ 8.9e−010

and

λ1(T2)− λ1(T̃2) ≈ −7.1e−003,
λ2(T2)− λ2(T̃2) ≈ 5.1e−004,
λ3(T2)− λ3(T̃2) ≈ −1.4e−008,
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which are clearly due to the perturbations, not to the numerical errors in the function
eig. We see that the eigenvalues of T̃1 exhibit absolute errors much smaller than
‖T1‖2 ε ≈ 2 × 10−2, which do correspond to relative errors smaller than ε = 10−7,
but the error in λ1(T̃2) is close to ‖T2‖2 ε ≈ 2 × 10−2. Why does T1 define well its
eigenvalues? First, we note that T1 is not sdd ; therefore [1, Theorem 4] does not
apply. Furthermore, we computed the polar factor H of T 1 = T1, in MATLAB, from
[V,D] = eig(T 1);H = V ∗ abs(D) ∗ V ′, and observed that the results of [22, section
2.8] are also unable to explain the good results obtained for T1. Now, take

X =

⎡⎢⎣ (1 + δ1)
−1 (1 + η2)

1/2

(1 + η2)
−1/2

(1 + δ2)
−1 (1 + η2)

1/2

⎤⎥⎦
and verify that for T̂1 := XT T̃1X we get

T̂1 =

⎡⎣ (1 + η1)(1 + δ1)−2(1 + η2) 105 0
105 105 105

0 105 (1 + η3)(1 + δ2)−2(1 + η2)

⎤⎦ .

As in the example given in section 2, we have managed to produce a matrix T̂1 with no
perturbations in the entries of larger size and, as a consequence, we have T̂1 = T1 +F
with ‖F‖2 much smaller than ||T1− T̃1||2; furthermore, since X is close to the identity
matrix, the relative Weyl’s theorem guarantees that the eigenvalues of T̂1 and T̃1 are
close. The situation is quite different with T2 because it is not possible to express the
perturbations in all the larger entries T2(1, 1), T2(2, 2), T2(1, 2), and T2(2, 1) in terms
of a multiplicative perturbation XT T̃2X , with some X close to the identity matrix.

5. A fast procedure to compute the error bound. In general, given a
symmetric tridiagonal T with entries of different magnitudes and small relative per-
turbations, as expressed in T̃ given in (3.2), we want to find a diagonal matrix X ,
with entries very close to the unity, such that the relations (4.1) and (4.2) hold, with
‖F‖2 as small as possible.

The example in the previous section shows that the rate of success of the procedure
depends upon the locations of the entries of larger magnitude relatively to each other.
Since our goal is to minimize, as much as possible, the size of the perturbed entries
in T̂ , we start by producing a sequence of 2n − 1 numbers, sorting the entries of T
by decreasing order of their absolute values and “clean” as many entries as possible
in this sequence. To simplify the presentation, we say that we clean the entry (i, j)
when, in the course of the transformation (4.1), we get T̂ (i, j) = T (i, j), getting rid
of the perturbation in T̃ (i, j). In practice, we do not carry out such an operation,
we just need to assume that it has been done. (This is in fact a combinatorial task
and does not require any arithmetic at all.) By “operation of index k,” k = 1, . . . , n,
we will mean the transformation that multiplies the kth row and the kth column of
T̃ , i.e., the diagonal congruence associated with X(k, k) in (4.1). We illustrate the
cleaning procedure with the following example.

Example 3. Suppose that our matrix T , of order n = 5, is such that

(5.1) |a1| ≥ |b3| ≥ |b2| ≥ |a4| ≥ |b4| ≥ |a2| ≥ |b1| ≥ |a5| ≥ |a3| .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PERTURBATION SPLITTING FOR MORE ACCURATE EIGENVALUES 85

First, we remove the perturbation from a1 (1 + η1), the entry of largest size, by setting
X(1, 1) = (1 + η1)

−1/2; because we want a1 to remain unperturbed, we close the index
1; i.e., it is removed from the set of indices allowed for subsequent operations. Next, to
clean b3 (1 + δ3) , we have two options: an operation of index 3 or an operation of in-
dex 4. Note that after cleaning b3 (1 + δ3) the indices 3 and 4 will be closed; therefore,
before cleaning b3 (1 + δ3), we clean a4 (1 + η4), since |a4| ≥ |a3|, and close index 4.
Then, we clean b3 (1 + δ3) (1 + η4)

−1/2 and close index 3. The next entry in (5.1) is b2,
and the set of indices still open is {2, 5}. So, we clean b2 (1 + δ2) (1 + δ3)

−1 (1 + η4)
1/2.

At this point, it is still possible to clean b4 (1 + δ4) (1 + η4)
−1/2, which is next in (5.1),

and this is the last entry to be cleaned. To summarize, with X diagonal such that

X(1, 1) = (1 + η1)
−1/2

,

X(2, 2) = (1 + δ2)
−1 (1 + δ3) (1 + η4)

−1/2 ,

X(3, 3) = (1 + δ3)
−1 (1 + η4)

1/2
,

X(4, 4) = (1 + η4)
−1/2 ,

X(5, 5) = (1 + δ4)
−1 (1 + η4)

1/2
,

we get the following entries for T̂ = XT T̃X :

â1 = a1, â4 = a4, b̂2 = b2, b̂3 = b3, b̂4 = b4,

â2 = a2 (1 + η2) (1 + δ2)
−2 (1 + δ3)

2 (1 + η4)
−1
,

â3 = a3 (1 + η3) (1 + δ3)
−2 (1 + η4) ,

â5 = a5 (1 + η5) (1 + δ4)
−1 (1 + η4)

1/2
,

b̂1 = b1 (1 + δ1) (1 + η1)
−1/2 (1 + δ2)

−1 (1 + δ3) (1 + η4)
−1/2

.

Therefore, we may write T̂ = T + F with

F =

⎡⎢⎢⎢⎢⎣
0 b1δ

′
1

b1δ
′
1 a2η

′
2 0

0 a3η
′
3 0

0 0 0
0 a5η

′
5

⎤⎥⎥⎥⎥⎦ ,
where δ′1, η

′
2, η

′
3, and η′5 are all of magnitude O(ε) and the null entries do correspond

to those positions that have been cleaned. In our example, if |a1| � |a2| (remember
that a2 is the entry of largest size that has not been possible to clean), then ||T − T̃ ||2
is much larger than ‖F‖2 and the bound (1.2) will be much sharper than the bound
(1.3) for the eigenvalues of size significantly smaller than ‖T ‖2. The gain, in terms
of the sharpness of the bound that we get for the absolute errors in the eigenvalues,
depends roughly on how large the ratio |a1| / |a2| is.

We should remark that the described procedure is not optimal for symmetric
tridiagonal matrices whose entries satisfy the condition max |aj | < min |bj |. In fact,
by closing indices 1, . . . , n, in this ordering, we may clean all off-diagonal elements, as
we did in Theorem 3.1; however, the procedure, as presented before, will clean first the
off-diagonal entries of larger size and will not allow, in general, all off-diagonal entries
to be cleaned. There are other cases for which our cleaning algorithm is not optimal
and where it may be possible to use combinatorial analysis to improve the technique.
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It should be noted that it is not possible to clean every entry of a submatrix[
aj bj
bj aj+1

]
for any j = 1, . . . , n − 1. Therefore, the error bound in (1.2) will never be smaller
than M ·O(ε), where

M = max
1≤j≤n−1

min {|aj | , |bj| , |aj+1|} .

In particular, for the matrix T2 in the example given in section 4, we have M = 105.
We finish this section by noting that our procedure can be readily adapted for

general symmetric matrices A to clean up to n entries. As for the tridiagonal case,
after ordering the nonzero entries of A, in decreasing absolute values, we clean as
many entries as possible in this sequence. To clean a pair of off-diagonal entries, say,
A(i, j) and A(j, i), there may be a choice for the index to use (if both i and j are
open). Because after cleaning A(i, j) and A(j, i), both indices will be closed, we may,
similarly to the procedure that we have used in the tridiagonal case, clean first A(i, i)
or A(j, j), the one of larger absolute value. A better solution may consist in looking
at the size of the remaining entries in the ith and jth columns (or rows) and trying
to clean the one of bigger size. Let this be the pair A(i, p) and A(p, i) for some p �= i
and p �= j. If the index p is already close, then it is certainly a good decision to
clean entries A(i, p) and A(p, i) before cleaning entries A(i, j) and A(j, i). However,
if index p is still open, the cleaning of the entries A(i, p) and A(p, i) closes p, and this
may prevent the eventual cleaning of a bigger entry in the pth column (row). For this
reason, it appears to be sensible to clean the pair A(i, q) and A(q, i) such that

|A(i, q)| = |A(q, i)| = max
r∈C
{|A(r, i)| , |A(r, j)|} ,

where C denotes the set of indices which are already closed at this point. As it happens
with the tridiagonal case, we cannot claim that this always produces the best possible
X . Nevertheless, this procedure is very fast and may improve significantly the error
bounds for the eigenvalues.

6. Accurate computation of the pivots. Using the very same idea of com-
bining additive perturbations with multiplicative perturbations, we now show that the
numerical values of the pivots of a symmetric tridiagonal matrix, computed through
the formulae (6.1), may be used to determine eigenvalues with high relative accuracy.
This may be of interest in the practical development of a parallel implementation of
an algorithm which combines bisection with a faster zerofinder. Even in the context
of sequential processing, there may still be room for new codes to take advantage of
special features of matrices like those exploited in this paper. For instance, the state-
of-the-art dqds algorithm, described in [40] and now implemented in the DSTEMR
routine of the latest release of LAPACK, cannot guarantee high relative accuracy
for the eigenvalues of symmetric tridiagonal indefinite matrices that define well their
eigenvalues. In such cases, the only LAPACK routine that warrants full precision is
DSTEBZ which implements the bisection method.

For a matrix T as given in Theorem 3.1, bisection (and related methods) is based
upon the decomposition T − λI = LDLT , where L is unit lower bidiagonal and D
= diag(q1, . . . , qn) is diagonal. The numbers qk are computed through

q1(λ) = a1 − λ,
qk(λ) = ak − λ− b2k−1/qk−1 (λ) , k = 2, . . . , n.(6.1)
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For each λ, the inertia of T − λI, which is given by the signs of the qk(λ), can be
used to locate eigenvalues. It is well known (see [25, p. 35] and [9, p. 230]) that the
bisection method is able to compute the eigenvalues of a symmetric matrix which is
very close to the exact one. In fact, the values qk(λ) computed with (6.1) in floating
point arithmetic have the same signs as the values q̃k(λ) that would be obtained if
exact arithmetic was carried out with the matrix T̃ such that3

ãk = ak,(6.2)

b̃k = bk (1 + δk) , where |δk| ≤ 2.5ε+O
(
ε2
)
.

However, if one is to use not only the signs but also the numerical values of qk(λ),
in the context of a method with a faster convergence rate, the previous result does
not apply because it does not guarantee that the computed values of qk(λ) do corre-
spond to a matrix T̃ with entries satisfying the relations (6.2). In the context of the
computation of singular values of bidiagonal matrices with relative accuracy, Demmel
and Kahan [4, p. 24] briefly mentioned the possible use of zerofinders, different from
simple bisection, to refine intervals; however, no details were given on the accuracy of
the computed values qk(λ).

It is not true, in general, that the computed pivots are the exact ones for a matrix
with small relative changes in its entries. However, an analysis similar to that used
by Wilkinson for the leading principal minors (see [44, p. 303]) allows us to show that
the computed values qk(λ) are the exact ones corresponding to off-diagonal entries
with small relative perturbations and diagonal entries with additive perturbations of
size (ak − λ)O (ε). Writing the perturbed diagonal entries in the form

ãk = ak (1 +O (ε))− λO (ε) ,

we see that the computed qk(λ) do correspond to a matrix with small relative per-
turbations in its entries plus a diagonal additive perturbation of size |λ|O (ε). More
precisely, we have the next theorem.

Theorem 6.1. Let T be a tridiagonal matrix as in (3.1). For a given λ, the
values of q1 (λ) , . . . , qn (λ) computed with the formulae (6.1) are the exact values
corresponding to a matrix having diagonal entries ãk = ak (1 + ηk) − ληk and off-
diagonal entries b̃k−1 = bk−1(1 + δk−1), where

(6.3)
{ |ηk| ≤ 2.02ε,
|δk−1| ≤ 3.03ε.

Proof. The proof is by induction. The result is obviously true for k = 1. Let us
assume that the computed

q̃1 (λ) , . . . , q̃r−1 (λ)

are exact for a matrix having modified elements up to ãr−1 and b̃r−2 and then show
that the computed q̃r (λ) is the exact value for a matrix having those modified elements
and also the elements ãr and b̃r−1. If we assume that q̃r−1 (λ) �= 0 and represent by
ε1, ε2, ε3, and ε4 the individual errors in the four operations involved in (6.1), we get

3In [6], it is shown that a similar result holds for symmetric matrices with acyclic graphs.
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for the computed value of qr (λ)

q̃r (λ) =
[
(ar − λ) (1 + ε1)− b2r−1 (1 + ε2)

q̃r−1 (λ)
(1 + ε3)

]
(1 + ε4)

= ar (1 + ηr)− λ (1 + ηr)− b2r−1 (1 + δr−1)
q̃r−1 (λ)

,(6.4)

where ηr = (1 + ε1) (1 + ε4)− 1 and δr−1 = (1 + ε2) (1 + ε3) (1 + ε4)− 1, so that we
get

(6.5)
{ |ηr| ≤ 2.02ε,
|δr−1| ≤ 3.03ε.

Now, we may get q̃r−1 (λ) = 0. If the arithmetic can handle the division by zero,
as IEEE arithmetic does, then it gives q̃r (λ) = −∞, independently of the value of
br−1 �= 0, and we can write, in this case,

(6.6) ηr = δr−1 = 0 ,

which, of course, satisfy the bounds (6.3). Furthermore, with q̃r (λ) = −∞ in (6.1),
we get that

q̃r+1 (λ) = (ar+1 − λ) (1 + ηr+1)

does not depend upon the value of br and we can write

(6.7) |ηr+1| ≤ ε, δr = 0.

In case the arithmetic in use does not handle the division by zero, we may replace
q̃r−1 (λ) = 0 with q̃r−1 (λ) = ar−1ε since this corresponds to perturbing ar−1 to
ar−1(1 + ε), in (6.1), for k = r − 1.

So, for a given λ, the computed q̃k(λ) do correspond to a matrix

(6.8) T̃ = T̂ +D,

where T̂ differs from T by small relative perturbations in its (diagonal and off-
diagonal) entries and D is a diagonal matrix with entries of size bounded by 2.02ε |λ|.
Therefore, if T defines well its eigenvalues so that for λk �= 0 and some small constant
γ, we may write, denoting by λ̂k the eigenvalues of T̂ ,∣∣∣λk − λ̂k∣∣∣ ≤ γε |λk| ,
we get, denoting by λ̃k the eigenvalues of T̃ and taking into account that ‖D‖ ≤
2.02ε |λ|, ∣∣∣λk − λ̃k∣∣∣ ≤ γε |λk|+ 2.02ε |λ|

or

(6.9)
∣∣∣λk − λ̃k∣∣∣ ≤ (γ + 2.02

|λ|
|λk|

)
ε |λk| ,
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which shows that the relative error in λ̃k is small whenever the ratio |λ|
|λk| is not large.

In practice, the bisection method, based upon the inertia of T − λI, is used until we
have a good approximation for the target eigenvalue; therefore, if one starts using
the numerical values q̃k (λ) only when a few significant digits are correct, we have
that |λ|

|λk| ≈ 1 and, in this case, the bound in (6.9) guarantees small relative errors.
Note that from the point of view of convergence speed, it is premature to switch from
bisection to a method with a better asymptotic rate of convergence before we have an
approximation with a few correct digits anyway. So we claim that the numerical values
of the pivots may be used to compute the eigenvalues with high relative accuracy
whenever T defines them well.

7. Toward a mixed precision bisection algorithm. Another practical ap-
plication that we envisage for our results is a mixed precision bisection algorithm.
Processors are arriving on the market that are much faster for single precision float-
ing point operations than for double precision arithmetic. Examples include the Intel
Pentium IV and M processors, AMD’s Opteron architectures, and the IBM Cell Broad
Engine processor. When working in single precision, floating point operations can be
performed up to two times faster on the Pentium and up to 10 times faster on the Cell
than for double precision [31]. This technological change is likely to have a significant
impact in the design of many numerical algorithms. Some work has already been
carried out in the context of iterative refinement for linear systems (see [2], [30], [31]).

In an implementation of the bisection method, tailored for such processors, single
precision arithmetic may be used to deliver intervals that are refined using double
precision arithmetic. Because each interval produced in single precision is not guar-
anteed to contain the desired eigenvalue (unless some form of interval arithmetic is
implemented), it cannot be accepted blindly and may need to be corrected in double
precision.

Now, a critical issue is to decide when to switch from single to double precision.
If we switch too soon, we will be using expensive double precision arithmetic that
could have been carried out in the single format; on the other hand, if we go too far
in single precision, an incorrect interval will be produced and we pay a penalty for
correcting the interval. It is for this reason that a good stopping criterion for the
single precision phase is much more important than a stopping criterion in the usual
situation where double precision is used from the very beginning.

For a matrix T with diagonal elements aj of size much smaller than ‖T ‖, we
may, taking the relation (3.3) into account, switch from single to double precision
immediately after locating an eigenvalue in the interval [y, z] such that

(7.1) z − y ≤ O (εs)max |aj | ,
where εs denotes the single precision roundoff error unit. More generally, for a matrix
with entries of different magnitudes, we may use the procedure described in section
5 to compute the largest size M of the entries that cannot be cleaned and replace
max |aj | with M in (7.1). For sdd matrices, this does not provide a good stopping
criteria; therefore, a different test would be required in conjunction with the one
proposed here.

8. Conclusions and further work. We have combined well-known results of
the perturbation theory to derive new error bounds for the eigenvalues of symmetric
tridiagonal matrices. Our bounds are sharper than the usual bounds in the case of
certain matrices with entries and eigenvalues of varying size. As an application of this
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idea, we have shown that a symmetric tridiagonal matrix T , with diagonal entries aj ,
defines well the eigenvalues whose magnitude is not much smaller than max |aj |. This
can be understood as a generalization of the well-known fact that a Golub–Kahan
matrix defines well all its eigenvalues. As a practical application of our perturbation
technique, we have shown that the numerical values and not only the signs of the
pivots, computed in the usual way, may be used to find, with high relative accuracy,
those eigenvalues which are well defined. Also, we have briefly considered a mixed
precision bisection algorithm and have shown that our perturbation technique may
help in the critical issue of determining when to switch from single to double precision.
We are currently working in this line of research.
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INEXACT INVERSE SUBSPACE ITERATION WITH
PRECONDITIONING APPLIED TO NON-HERMITIAN

EIGENVALUE PROBLEMS∗
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Abstract. Convergence results are provided for inexact inverse subspace iteration applied to
the problem of finding the invariant subspace associated with a small number of eigenvalues of
a large sparse matrix. These results are illustrated by the use of block-GMRES as the iterative
solver. The costs of the inexact solves are measured by the number of inner iterations needed by the
iterative solver at each outer step of the algorithm. It is shown that for a decreasing tolerance the
number of inner iterations should not increase as the outer iteration proceeds, but it may increase for
preconditioned iterative solves. However, it is also shown that an appropriate small rank change to
the preconditioner can produce significant savings in costs and, in particular, can produce a situation
where there is no increase in the costs of the iterative solves even though the solve tolerances are
reducing. Numerical examples are provided to illustrate the theory.
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1. Introduction. Inverse subspace iteration is a block version of the inverse
iteration. It computes an approximation of the invariant subspace of a large matrix
A ∈ Cn×n corresponding to the eigenvalues in an isolated cluster around a given shift
σ. The corresponding algorithm is very simple and can formally be written as

(1.1) Xi = (A− σI)−1Xi−1, i = 1, 2, . . . ,

where X0 ∈ Cn×p is full rank with p � n. As the iterations unfold, the invariant
subspace and hence the eigenvectors corresponding to eigenvalues near σ eventually
dominate Xi. The method is known to be reliable [17, 26, 20, 27] and, although its
convergence is linear, only a few iterations are needed to converge, provided that the
target eigenvalues lie in a cluster well separated from the rest of the spectrum and p
is chosen as large as the number of eigenvalues in the cluster. The drawback of this
method is that each iteration necessitates the exact solution of a block linear system,
that is, a linear system with multiple right-hand sides of the form

(1.2) (A− σI)Y = X, Y,X ∈ C
n×p,

which is a challenge when n is large. The first aim of this paper is to analyze the con-
vergence of (1.1) when the underlying block linear systems (1.2) are solved inexactly
by an iterative method. The method obtained this way belongs to the wide class of
“inner-outer” iterative methods. The outer iteration is the inverse subspace iteration
and the inner iteration is the iterative solution of the block linear system (1.2). The
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March 10, 2008; published electronically February 27, 2009.

http://www.siam.org/journals/simax/31-1/67379.html
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results in this paper extend the results in [14, 12, 3, 4] on inexact inverse iteration to
inexact inverse subspace iteration.

The second aim of this paper is to discuss the performance of unpreconditioned
and preconditioned block-GMRES as the inexact solver. If P denotes a preconditioner
for (A− σI), the (right) preconditioned form of (1.2) is

(1.3) (A− σI)P−1Ỹ = X, Y = P−1Ỹ ,

with the aim that (1.3) is solved more efficiently than (1.2). For inexact inverse it-
eration, [3, 5] consider the costs of the inner solves for Krylov solvers and analyze
cases where the number of inner iterations may remain approximately constant or
may increase as the outer iteration proceeds. In this paper we extend these results to
the block case. Moreover, we show how a rank-p modification of P gives a “tuned”
preconditioner which eliminates the increase in the number of inner iterations as the
outer iteration proceeds.

Recently, inexact inverse iteration has been discussed by [14, 12, 4], and for the
symmetric case by [25, 3]. The idea of tuning the preconditioner for eigenvalue prob-
lems was introduced in [8] as a means of obtaining quadratic outer convergence in
a variation of inexact inverse iteration with a certain variable shift, but no analysis
of the inexact solver was presented. In [7] tuning the preconditioner for inexact in-
verse iteration applied to a Hermitian eigenvalue problem was analyzed, and certain
specialized results, comparing a tuned with a standard preconditioner, were obtained
by exploiting the Hermitian structure. The fact that, for a fixed shift and a vari-
able tolerance, tuning removes the dependence on the number of inner iterations was
also presented, though the analysis relied on the construction of an “ideal precon-
ditioner,” first introduced in an earlier version of this paper. Recent work in [30]
contains a detailed convergence analysis of preconditioned MINRES as the solver in
inexact Rayleigh quotient iteration which shows that tuning the preconditioner leads
to a major reduction in inner iteration costs over the untuned case. There is consider-
able interest in inexact solves for subspace-based methods, especially in relation to the
Jacobi–Davidson method (JD) [24, 2, 16] and the Riccati-based methods as developed
in [18, 6]; the latter may be viewed as the block analogue of JD and are useful for com-
puting invariant subspaces. JD is an important inner-outer iteration that improves
the current approximate eigenvector through inexact solves and preconditioning. It
exhibits good inner solve performance because of the gradient form of the right-hand
side. The performance of preconditioned inner solves for inexact inverse iteration is
often poorer than for JD, but we shall show that the tuning idea discussed here sub-
stantially improves the performance of the preconditioned iterative solver. In fact,
[9] contains an equivalence result between preconditioned simplified JD (where the
correction equation in JD is used without expanding the search space) and a special
tuned inexact Raleigh quotient (IRQ) iteration when a Galerkin–Krylov solver is used.
This extends a result of [23] and suggests that inverse iteration–based methods might
become more competitive if tuned preconditioners are used. The link between IRQ
and simplified JD has also been noted in [15], and another useful method which uses
inexact solves within inner-outer iterations is the trace minimization method [22]. A
method which uses preconditioned iterative solves on subspaces is the truncated-CG–
based trust-region method [1], which is particularly successful for finding extremal
eigenvalues of symmetric matrices and is also related to simplified JD [1].

In section 2 we present the inexact inverse subspace iteration algorithm and some
preliminary results. In particular, we discuss some tools for measuring the closeness
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between subspaces. Section 3 presents a convergence theory for the inexact (and exact)
inverse subspace iteration. We shall show that if these linear systems are solved to
an appropriately chosen decreasing tolerance, then the method attains a linear rate
of convergence just as in the case of exact solves (Theorem 3.1). In section 3.1 we
consider the use of block-GMRES as the (unpreconditioned) solver. We show that
for a decreasing tolerance the number of inner iterations should not increase as the
outer iteration converges. The case of preconditioned solves is discussed in section 4.
Our main result, presented in section 4.2, is that if a standard preconditioner is
modified by a small rank change, then there is again no increase in the number of
inner iterations as the outer iteration proceeds. We call the process of modifying
the preconditioner in this way “tuning.” In section 5, numerical tests are given to
illustrate the theory. In particular, it is shown that significant savings are obtained
when a tuned preconditioner is used.

This paper contains several extensions of the work in [14, 12, 3, 5, 7, 8]. First,
there is the extension to the block case. Second, our convergence theory for inexact
subspace iteration and for block-GMRES works under rather weak assumptions; for
example, the matrix A can be defective. Third, the tuning theory, discussed in [7] for
Hermitian problems, is extended to the non-Hermitian case, and strong supporting
numerical evidence for its effectiveness is presented. Finally, the introduction of the
“ideal” preconditioner in section 4 allows a complete and rigorous proof that the tuned
preconditioner removes the dependence on the number of inner iterations. This con-
struction, developed here first, was utilized in [7] and is a rather powerful theoretical
tool. It is likely to have application in other related areas.

2. Inexact inverse subspace iteration. In this section we describe the inex-
act inverse subspace iteration algorithm, and in section 2.1 revise some background
material, especially relating to the angle between two subspaces.

In many applications interest centers on the invariant subspace corresponding to
the eigenvalues nearest zero, and from now on we shall choose the shift in (1.2) to be
zero. Much of what we say extends to the case of a nonzero fixed shift.

Inexact inverse subspace iteration is described in the following inner-outer algo-
rithm.

Algorithm 1 (inexact subspace iteration).

Given δ ≥ 0 and X0 ∈ Cn×p with X∗
0X0 = I,

For i = 0, 1, . . .
1. Compute Li = X∗

i AXi,
2. Set Ri = AXi −XiLi and test the convergence,
3. Solve AYi = Xi inexactly, that is, compute Yi such that

Xi −AYi = Δi with ‖Δi‖ ≤ τi = δ‖Ri‖,
4. Orthonormalize the columns of Yi into Xi+1.

End For i
In Algorithm 1 and throughout this paper, the symbol ‖ ‖ denotes the Euclidean

norm or its induced matrix norm.
In section 3 we first analyze the convergence of Algorithm 1 with no particular

solver in mind, and in section 3.1 we discuss the case when the block linear systems
in step 3 of Algorithm 1 are solved by block-GMRES. Note that if the block systems
are solved exactly, then the (exact) inverse subspace iteration (1.1) is recovered.

The next section gathers some technical details which will be used throughout
this paper.
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2.1. Notation and preliminaries. We assume that the eigenvalues λ1, λ2, . . . , λn
of A are such that

(2.1) 0 < |λ1| ≤ · · · ≤ |λp| < |λp+1| ≤ · · · ≤ |λn|.
By Schur’s theorem we may decompose the matrix A to upper triangular form

by a unitary matrix
(
V1 V ⊥

1

)
:

(2.2) A =
(
V1 V ⊥

1

)( T11 T12

0 T22

)(
V1 V ⊥

1

)∗
,

where V1 ∈ Cn×p, V ⊥
1 ∈ Cn×(n−p), T11 ∈ Cp×p, and T22 ∈ C(n−p)×(n−p). The spectra

of T11 and T22 are, respectively, λ1, . . . , λp and λp+1, . . . , λn. Let Q ∈ Cp×(n−p) be
the unique solution of the Sylvester equation

(2.3) QT22 − T11Q = T12.

Then A can be block-diagonalized as follows (see, e.g., [11]):

(2.4) A =
(
V1 V ⊥

1

)( I Q
0 I

)(
T11 0
0 T22

)(
I −Q
0 I

)(
V1 V ⊥

1

)∗
.

Let

V2 =
(
V1Q+ V ⊥

1

)
(I +Q∗Q)−

1
2 ,

L = T11, M = (I +Q∗Q)−
1
2 T22 (I +Q∗Q)

1
2 .

Then the block-diagonalization in (2.4) can be written

(2.5) A =
(
V1 V2

)( L 0
0 M

)(
V1 V2

)−1
.

Note that M and T22 have the same spectra and that V1 and V2 have orthonormal
columns. The subspaces V1 = R(V1) and V2 = R(V2) spanned by the columns of V1

and V2 are complementary invariant subspaces of A associated, respectively, with the
eigenvalues λ1, . . . , λp of L and λp+1, . . . , λn of M . Our main task in this paper is
to compute the invariant subspace Ṽ1 ⊂ V1 associated with the q ≤ p smallest (in
modulus) eigenvalues of A by Algorithm 1.

The smallest (largest) singular value of a matrix B is denoted by σmin(B) =
min‖x‖=1 ‖Bx‖ (σmax(B) = ‖B‖ = max‖x‖=1 ‖Bx‖). The separation sep(E,F ) be-
tween two matrices E ∈ Cp×p and F ∈ Cq×q is defined as (see [28])

sep(E,F ) = min
‖X‖=1

‖EX −XF‖ .

It is known that sep(E,F ) > 0 if and only if E and F have disjoint spectra. Our
analysis will lead us to use either sep(T22, L) or sep(M,L). These quantities are
equivalent since (see [28])

sep(T22, L)/κ ≤ sep(M,L) ≤ κ sep(T22, L),

where κ =
√

1+σ2
max(Q)

1+σ2
min(Q)

, with Q defined by (2.3).
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Let

(2.6) W1 = V1 − V ⊥
1 Q∗ and W2 = V ⊥

1 (I +Q∗Q)
1
2 .

Then R(W1) and R(W2) are complementary invariant subspaces of A∗ corresponding
to the eigenvalues λ̄1, . . . , λ̄p of L∗ and λ̄p+1, . . . , λ̄n of M∗, and we have

(2.7)
(
W1 W2

)∗ =
(
V1 V2

)−1
.

The spectral projection on V1 is defined by

(2.8) P = V1W
∗
1 .

Note that

(2.9) ‖P‖ = ‖W1‖ =
√

1 + ‖Q‖2.

To understand the performance of Algorithm 1 we need to measure the deviation
of Xi from V1. This can be done by monitoring the angle between the subspaces V1

and Xi = R(Xi). One tool is the sine of the largest canonical angle between V1 and
Xi defined by (see [11, p. 584])

(2.10) sin ∠(Xi,V1) =
∥∥(V ⊥

1 )∗Xi

∥∥ .
We assume that the subspaces Xi and V1 have the same dimension. Then (see [11,
p. 76])

sin∠(Xi,V1) = sin ∠(V1,Xi) = ‖XiX
∗
i − V1V

∗
1 ‖(2.11)

= min
Z∈Cp×p

‖Xi − V1Z‖ = min
Z∈Cp×p

‖V1 −XiZ‖.(2.12)

We also assume that the matrix Xi can be decomposed as

(2.13) Xi = V1Ci + V2Si with ‖Si‖ < 1.

Using (2.7), we see that the matrices Ci and Si are given by

(2.14) Ci = W ∗
1Xi ∈ C

p×p, Si = W ∗
2Xi ∈ C

(n−p)×p.

From (2.13), formula (2.10) becomes

(2.15) sin ∠(Xi,V1) = ‖(V ⊥
1 )∗V2Si‖,

which shows that ‖Si‖ can also be used to measure the deviation between V1 and Xi.
In fact, we will cast our results in terms of the quantities

sin ∠(Xi,V1), ti =
∥∥SiC−1

i

∥∥ or si = ti ‖Ci‖ .

Note that in the case when A is Hermitian, then ti and ‖Si‖ represent, respectively, the
tangent and the sine of the largest angle between Xi and Vi. The following proposition
shows that all these quantities behave like ‖Si‖. So Xi → V1 if and only if ti → 0,
si → 0, or ‖Si‖ → 0.

Proposition 2.1. Let Xi be partitioned as in (2.13). Then
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(1) Ci is nonsingular and therefore ti is well defined. Moreover, the singular val-
ues of Ci satisfy

0 < 1− ‖Si‖ ≤ σk(Ci) ≤ 1 + ‖Si‖, k = 1, . . . , p,(2.16)

and Ci can be written

Ci = Ui + Υi,(2.17)

where Ui is unitary and ‖Υi‖ ≤ ‖Si‖ < 1.
(2) sin ∠(Xi,V1) ≤ ‖Si‖ ≤ si ≤ ‖Si‖ 1+‖Si‖

1−‖Si‖ .

(3) sin ∠(Xi,V1) ≤ ti ≤ ‖Si‖
1−‖Si‖ .

(4) ‖Si‖ ≤ ‖P‖ sin∠(Xi,V1).
Proof.
(1) Assume Ci is singular and let u be a nonzero vector such that Ciu = 0. Then

‖u‖ = ‖Xiu‖ = ‖V2Siu‖ ≤ ‖Si‖‖u‖ < ‖u‖,
a contradiction. Hence Ci is nonsingular. The kth singular values of Xi and
V1Ci satisfy (see [11, p. 428])

|σk(Xi)− σk(V1Ci)| ≤ ‖Xi − V1Ci‖ ≤ ‖Si‖,
and hence

|1− σk(Ci)| ≤ ‖Si‖.

Let Ci = W
(l)
i ΣiW

(r)
i be the singular value decomposition of Ci. Then Ci can

be written as in (2.17) with Ui = W
(l)
i W

(r)
i and Υi = W

(l)
i (Σi − I)W (r)

i .
(2) The first bound follows from (2.15) and the other ones from the definition of

si and (2.16).
(3)

sin∠(Xi,V1) = ‖(X⊥
i )∗V1‖ = ‖(X⊥

i )∗(V1 −XiC
−1
i )‖

≤ ‖V1 −XiC
−1
i ‖ = ‖V2SiC

−1
i ‖ = ti,

ti = ‖SiC−1
i ‖ ≤

‖Si‖
σmin(Ci)

≤ ‖Si‖
1− ‖Si‖ .

(4)

‖Si‖ = ‖W ∗
2Xi‖ =

∥∥∥(I +Q∗Q)
1
2 (V ⊥

1 )∗Xi

∥∥∥
≤ ‖P‖ sin∠(Xi,V1).

The following proposition gives bounds on the residual norm.
Proposition 2.2. The following inequalities hold:

sep(T22, Li) sin ∠(Xi,V1) ≤ ‖Ri‖ ≤ ||S||si,
where S is the Sylvester operator X → S(X) = MX −XL and

‖S|| = sup
‖X‖=1

‖S(X)‖.
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Proof.

‖Ri‖ ≥ ‖(V ⊥
1 )∗Ri‖

= ‖(V ⊥
1 )∗AXi − (V ⊥

1 )∗XiLi‖.

From (2.2) we have (V ⊥
1 )∗A = T22(V ⊥

1 )∗. Then

‖Ri‖ ≥ ‖T22(V ⊥
1 )∗Xi − (V ⊥

1 )∗XiLi‖ ≥ sep(T22, Li) ‖(V ⊥
1 )∗Xi‖.

Also,

‖Ri‖ = min
Z∈Cp×p

‖AXi −XiZ‖ (see [28,Thm. 1.15])

≤ ‖AXi −XiC
−1
i LCi‖

= ‖MSi − SiC−1
i LCi‖

= ‖ (MSiC
−1
i − SiC−1

i L
)
Ci‖ ≤ ‖S‖ ‖SiC−1

i ‖‖Ci‖.
3. Convergence analysis of Algorithm 1. In this section we analyze the

convergence of Algorithm 1 when the inner iterations are solved inexactly. First, we
make no assumption on the inexact solver except that step 3 in Algorithm 1 is satisfied.
Then, in section 3.1, we assume that a block-GMRES method is the inexact solver.

Theorem 3.1 (convergence of Algorithm 1). Assume that X0 is close to V1. If
a tolerance of the form τi = δ‖Ri‖ is chosen with δ <

(‖(C−1
i ‖‖P‖‖Ri‖

)−1
, then we

have

ti+1 ≤ ‖M−1‖‖L‖ ti + αiτi
1− αiτi ,(3.1)

with αi = ‖C−1
i ‖‖P‖ ≤ ‖P‖

1−‖Si‖ , and where M and L are defined in (2.5). If, in
addition, ‖M−1‖‖L‖ < 1, then Algorithm 1 converges linearly.

Proof. Note first that

ti+1 =
∥∥Si+1C

−1
i+1

∥∥ =
∥∥(W ∗

2Xi+1)(W ∗
1Xi+1)−1

∥∥ =
∥∥(W ∗

2Xi+1K)(W ∗
1Xi+1K)−1

∥∥ ,
where K ∈ Cp×p is an arbitrary nonsingular matrix. In particular ti+1 =
‖(W ∗

2 Yi)(W ∗
1 Yi)−1‖ and therefore

ti+1 =
∥∥∥W ∗

2A
−1(Xi −Δi)

(
W ∗

1A
−1(Xi −Δi)

)−1
∥∥∥

=
∥∥∥M−1W ∗

2 (Xi −Δi)
(
L−1W ∗

1 (Xi −Δi)
)−1
∥∥∥

≤ ‖M−1‖‖L‖
∥∥∥W ∗

2 (Xi −Δi) (W ∗
1 (Xi −Δi))

−1
∥∥∥

≤ ‖M−1‖‖L‖
∥∥∥W ∗

2 (Xi −Δi)C−1
i

(
I −W ∗

1 ΔiC
−1
i

)−1
∥∥∥

≤ ‖M−1‖‖L‖ ti + ‖W
∗
2 Δi‖‖C−1

i ‖
1− ‖W ∗

1 Δi‖‖C−1
i ‖

.

Note that ‖W ∗
2 Δi‖ ≤ ‖W2‖τi. From (2.6) and (2.9) we have ‖W2‖ = ‖P‖, and from

Proposition 2.2, ‖C−1
i ‖ ≤ 1/(1 − ‖Si‖). The expression ‖W ∗

1 Δi‖ is bounded in a
similar way, and (3.1) is obtained. Since τi ≤ δ‖Ri‖ ≤ δ‖S‖‖Ci‖ti, linear convergence
is established for small δ and ‖M−1‖‖L‖ < 1.
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When A is Hermitian, ‖M−1‖‖L‖= |λp|/|λp+1| < 1, so the condition ‖M−1‖‖L‖
< 1 is automatically satisfied; moreover, in this case Q = 0 in (2.4) and ‖P‖ = 1
(see (2.9)), ‖C−1

i ‖ = 1/ cos∠(Xi,V1) and ‖W ∗
1 Δi‖ ≤ ‖Δi‖, ‖W ∗

2 Δi‖ ≤ ‖Δi‖. Thus
(3.1) becomes

tan ∠(Xi+1,V1) ≤ |λp|
|λp+1|

sin∠(Xi,V1) + τi
cos∠(Xi,V1)− τi .(3.2)

If we now take δ = 0 in Theorem 3.1, then we recover two convergence results for
the exact solves case (see [20, Thm. 5.2] and [27, p. 383]). This point is clarified in
the next corollaries.

Corollary 3.2. If the block systems in step 3 of Algorithm 1 are solved exactly,
i.e., τi = 0, then

ti ≤ ‖M−1‖‖L‖ti−1

and

ti ≤ ‖M−i‖‖Li‖t0 ≤
( |λp|
|λp+1| + ηi

)i
t0,

with limi→∞ ηi = 0.
Proof. The first inequality follows directly from Theorem 3.1. For the second one,

we have

ti =
∥∥∥(W ∗

2A
−1Xi

) (
W ∗

1A
−1Xi

)−1
∥∥∥

=
∥∥∥(W ∗

2A
−iX0

) (
W ∗

1A
−iX0

)−1
∥∥∥

= ‖ (M−iS0

) (
L−iC0

)−1 ‖ ≤ ‖M−i‖‖Li‖t0.

Now, using the fact that for any square matrix E, ‖Ei‖ ≤ (ρ(E) + η
(i)
E )i, where ρ(E)

is the spectral radius of E and limi→∞ η
(i)
E = 0, we obtain with obvious notation

‖M−i‖‖Li‖ ≤
(
ρ(M−1) + η

(i)
M−1

)i (
ρ(L) + η

(i)
L

)i
=
( |λp|
|λp+1| + ηi

)i

with

ηi = η
(i)
M−1 |λp|+ η

(i)
L /|λp+1|+ η

(i)
M−1η

(i)
L → 0 as i→∞.

In practice, the block size p is chosen to enable the computation of invariant
subspaces corresponding to close/multiple/complex pairs of eigenvalues. Therefore,
to speed up the convergence, it is desirable to choose p larger than the dimension
of the sought invariant subspace. Thus an estimate of the angle between Xi and a
subspace Ṽ1 ⊂ V1 is needed. Corollary 3.2 does not give such an estimate because ti
relates Xi to V1 not to a subspace Ṽ1 ⊂ V1. The following corollary treats this point.

Corollary 3.3. Assume that the block systems in step 3 of Algorithm 1 are

solved exactly and that V1 =
(
Ṽ1

˜̃
V 1

)
with Ṽ1 ∈ Cn×q, q ≤ p, and Ṽ1 := R(Ṽ1) span

an invariant subspace of A associated with the eigenvalues λ1, . . . , λq. Then

sin∠(Ṽ1,Xi) ≤
( |λq |
|λp+1| + ηi

)i ∥∥∥(I − P)X̃0

∥∥∥
with limi→∞ ηi = 0 and X̃0 = X0C

−1
0

(
Iq

0

)
.
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Proof. From the proof of Corollary 3.2, we have∥∥∥∥SiC−1
i

(
Iq
0

)∥∥∥∥ =
∥∥∥∥(M−iS0

) (
L−iC0

)−1
(
Iq
0

)∥∥∥∥
=
∥∥∥∥M−i (S0C

−1
0

)
Li
(
Iq
0

)∥∥∥∥ .
Since L is upper triangular, Li

(
Iq

0

)
=
(
Iq

0

)
(L1:q,1:q)

i
. Then

∥∥∥∥SiC−1
i

(
Iq
0

)∥∥∥∥ ≤ ‖M−i‖‖ (L1:q,1:q)
i ‖
∥∥∥∥S0C

−1
0

(
Iq
0

)∥∥∥∥
≤
( |λq |
|λp+1| + ηi

)i ∥∥∥∥S0C
−1
0

(
Iq
0

)∥∥∥∥ as in Corollary 3.2.

The proof is completed by noting that

sin ∠(Ṽ1,Xi) =
∥∥∥(I −XiX

∗
i )Ṽ1

∥∥∥
≤
∥∥∥∥Ṽ1 −XiC

−1
i

(
Iq
0

)∥∥∥∥ =
∥∥∥∥SiC−1

i

(
Iq
0

)∥∥∥∥
and that ∥∥∥∥S0C

−1
0

(
Iq
0

)∥∥∥∥ =
∥∥∥∥X0C

−1
0

(
Iq
0

)
− Ṽ1

∥∥∥∥ =
∥∥∥(I − P)X̃0

∥∥∥ .
Note that this corollary generalizes [21, Thm. 5.2] in the sense that the estimate

on sin ∠(Ṽ1,Xi) deals with invariant subspaces rather than eigenvectors.

3.1. Use of block-GMRES as inner iteration. In this section we restrict our
attention to the use of block-GMRES as inner solver in Algorithm 1. Block-GMRES
belongs to the family of block Krylov subspace methods (see [21]), and it is attractive
for large (sparse) linear systems with multiple right-hand sides, as in the case of
interest.

Assume that block-GMRES is used to solve a linear system with multiple right-
hand sides of the form

(3.3) AZ = B, B ∈ C
n×p,

and that B can be decomposed as

(3.4) B = V1B1 + V2B2,

with V1 and V2 given in (2.5), B1 ∈ Cp×p nonsingular, and B2 ∈ C(n−p)×p. Then we
have the following theorem.

Theorem 3.4. The residual B − AZk associated with the approximate solution
Zk of (3.3) obtained with k iterations of block-GMRES starting with Z0 = 0 is such
that

(3.5) ‖B −AZk‖ ≤ min
p∈P̄k−1

‖p(M)‖‖S‖‖L−1‖‖B2B
−1
1 ‖‖B1‖,

where P̄l is the set of complex polynomials pl of degree at most l such that pl(0) = 1
and S is the Sylvester operator defined in Proposition 2.2.
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Proof. Since Zk ∈ R
(
B AB . . . Ak−1B

)
and block-GMRES minimizes the resid-

ual, we have

‖B −AZk‖ = min
G1,...,Gk∈Cp×p

∥∥∥∥∥B +
k∑
i=1

AiBGi

∥∥∥∥∥ .
Let f1, . . . , fk−1 ∈ C. Set F = B−1

1 L−1B1 and choose

G1 = f1I − F, Gi = fiI − fi−1F, i = 2, . . . , k − 1, and Gk = −fk−1F.

Then

‖B −AZk‖ ≤ min
f1,...,fk−1∈C

∥∥∥∥∥B −ABF +
k−1∑
i=1

fiA
i(B −ABF )

∥∥∥∥∥ .
Now observe that the decomposition (3.4) yields

B −ABF = V2 (B2 −MB2F )
= V2

(
B2B

−1
1 L−MB2B

−1
1

)
L−1B1

= −V2S(B2B
−1
1 ) L−1B1

and therefore

‖B −AZk‖ ≤ min
f1,...,fk−1∈C

∥∥∥∥∥
(
I +

k−1∑
i=1

fiM
i

)
S(B2B

−1
1 ) L−1B1

∥∥∥∥∥ .
The proof is completed by noting that

min
f1,...,fp∈C

∥∥∥∥∥I +
k−1∑
i=1

fiM
i

∥∥∥∥∥ = min
p∈P̄k−1

‖p(M)‖

and that ∥∥S(B2B
−1
1 ) L−1B1

∥∥ ≤ ‖S‖‖B2B
−1
1 ‖‖L−1‖‖B1‖.

Note that the minimum in (3.5) is taken with respect to the matrix M and not
A as in the usual theory. Also note that according to Proposition 2.1 the quantity
‖B2B

−1
1 ‖‖B1‖ behaves like the sine of the largest canonical angle between V1 and

R(B).
To estimate minp∈P̄k−1

‖p(M)‖ we use the following lemma, whose proof can be
read off from that of, e.g., [13, Lemma 1].

Proposition 3.5. Let E be a convex, closed bounded set in the complex plane,
and let φ be the conformal mapping from the exterior of E onto the exterior of the unit
disk such that φ(∞) = ∞ and φ′(∞) > 0. If the numerical range of M is contained
in E and 0 /∈ E, then

min
p∈P̄k−1

‖p(M)‖ ≤ N
(

1
|φ(0)|

)k−1

,(3.6)

with N = 3 l(∂E)
2πd(∂E) , where l(∂E) is the length of the boundary curve ∂E of E and

d(∂E) is the minimal distance between the numerical range of M and ∂E.
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An immediate corollary is as follows.
Corollary 3.6. Let M be perturbed to M + δM , where ‖δM‖ < d(∂E). Then

min
p∈P̄k−1

‖p(M + δM)‖ ≤ Nδ
(

1
|φ(0)|

)k−1

,(3.7)

with Nδ = 3 l(∂E)
2π(d(∂E)−‖δM‖) .

A favorable situation for the bound in Proposition 3.5 is when the numerical
range of M is well separated from 0. Then |φ(0)| 
 1 and minp∈P̄k−1

‖p(M)‖ goes to
0 quickly as k increases.

Proposition 3.5 remains valid if the numerical range of M is replaced by the
ε-spectrum of M defined, for ε > 0, by

Λε(M) = {λ ∈ C : σmin(λI −M) ≤ ε}.
Then the constant N in (3.6) should be replaced by the larger one N = 3 l(∂E)

2π ε (see
[13]). The advantage here is that the set Λε(M) is generally smaller than the numerical
range of M (see [29]). Thus the set E can be chosen far from 0, which leads to the
favorable condition |φ(0)| 
 1. For the perturbed case a similar change is needed in
(3.7).

A combination of Theorem 3.4 and Proposition 3.5 gives the following result.
Theorem 3.7. Let Zk be the approximate solution of (3.3) obtained with k iter-

ations of block-GMRES starting with Z0 = 0. Under the assumptions of Proposition
3.5, if

(3.8) k ≥ 1 +
1

log |φ(0)|
(

log
(
N‖S‖‖L−1‖)+ log

‖B2B
−1
1 ‖‖B1‖
τ

)
,

then ‖B −AZk‖ ≤ τ .
Note that the bound in (3.8) is only a sufficient condition which guarantees that

the norm of the residual is less than τ . It is clear that the required accuracy may be
reached for k smaller than the bound (3.8) suggests.

In step 3 of Algorithm 1, the system to be solved by block-GMRES is AYi = Xi.
The right-hand side Xi decomposes as in (2.13), which is of the same form as (3.4).
In this context, Theorem 3.7 tells us that the residual obtained with ki iterations of
block-GMRES starting with 0 is less than τi = δ‖Ri‖ if

ki ≥ 1 +
1

log |φ(0)|
(

log
(
N‖S‖‖L−1‖)+ log

‖SiC−1
i ‖‖Ci‖
τi

)

= 1 +
1

log |φ(0)|
(

log
(
N‖S‖‖L−1‖)+ log

si
δ‖Ri‖

)
.(3.9)

The next proposition shows that as Xi starts to approximate V1, the ratio si/‖Ri‖ is
bounded independent of i, and thus the number of inner iterations needed by block-
GMRES is bounded independent of i.

Proposition 3.8. Let Xi be decomposed as

(3.10) Xi = V1Ci + V2Si with ‖Si‖ < ε.

If 0 ≤ ε < min
(
1,− 1

2 + 1
2

√
1 + sep(T22, L)/‖A‖), then

(3.11)
si
‖Ri‖ ≤

1 + ε

1− ε
‖P‖

sep(T22, L)− 4‖A‖ε(ε+ 1)
.
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Hence the number of inner iterations needed by block-GMRES to satisfy the tolerance
in step 3 of Algorithm 1 is bounded independent of i.

Proof. Note first that the condition on ε ensures that sep(T22, L)−4‖A‖ε(ε+1) > 0.
Using Propositions 2.1 and 2.2, we have

si ≤ ‖Si‖ 1 + ‖Si‖
1− ‖Si‖ ≤ ‖P‖ sin∠(Xi,V1)

1 + ε

1− ε ,

‖Ri‖ ≥ sep (T22, Li) sin ∠(Xi,V1).

Then

si
‖Ri‖ ≤

1 + ε

1− ε
‖P‖

sep(T22, Li)
.

As in Proposition 2.1, the decomposition (3.10) allows us to write Ci = Ui + Υi with
Ui unitary and ‖Υi‖ < ε. Then

sep(T22, Li) = sep (T22, U
∗
i LiUi)

≥ sep(T22, L)− ‖L− U∗
i LiUi‖ (see [28, p. 234]).

Using the decomposition of Xi in Li = X∗
i AXi and the expression of Ci given above,

we obtain the bound

‖L− U∗
i LiUi‖ ≤ 4‖A‖ε(1 + ε),

from which (3.11) is obtained.
This proposition is illustrated in Figure 3.1 on a convection-diffusion problem (see

Example 1 in section 5 for details) where after an initial increase in ki, the number
of inner iterations needed at each outer iteration settles down to an approximately
constant value.
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Fig. 3.1. Outer iterations against inner iterations (Example 1).

Our aim in the next section is to see if the nice property that ki is bounded
independent of i holds when system (3.3) is preconditioned.
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4. Preconditioning the inexact inverse subspace iteration. A good pre-
conditioner helps to accelerate the computations in step 3 of Algorithm 1 and hence
the convergence of this algorithm. A standard way to accomplish this task is to find
an approximation P of A such that the systems with the matrix P are cheap to solve.
Then the matrix Yi in step 3 of Algorithm 1 is obtained by applying block-GMRES
to the (right) preconditioned block system

(4.1) AP−1Zi = Xi, Yi = P−1Zi.

Let us denote by Zki the approximation of Zi obtained at iteration ki of block-GMRES
and satisfying

(4.2)
∥∥Xi −AP−1Zki

∥∥ ≤ τi = δ ‖Ri‖ ,
and so, with Yki = P−1Zki , step 3 in Algorithm 1 is satisfied. The natural ques-
tion is whether ki can be bounded independent of i as Xi approaches V1, as for the
unpreconditioned case in Proposition 3.8.

To answer this question, we attempt to repeat the analysis in the previous section.
So, analogously to (2.5), assume that AP−1 is block-diagonalized as

(4.3) AP−1 =
(
U1 U2

)( K1 0
0 K2

)(
U1 U2

)−1
, with U∗

i Ui = I, i = 1, 2,

where K1 and K2 have disjoint spectra. Assume further that Xi is decomposed as

(4.4) Xi = U1C̃i + U2S̃i with ‖S̃i‖ < 1,

and that hypotheses analogous to Proposition 3.5 and Theorem 3.7 hold. Let

s̃i = ‖S̃iC̃−1
i ‖‖C̃i‖.

The question now is, can the ratio s̃i/‖Ri‖ be bounded independent of i as Xi ap-
proaches V1? The a priori answer is no, as the following analysis shows.

From Proposition 2.1, (2.13), and (4.4) we have

s̃i + si ≥ ‖S̃i‖+ ‖Si‖ ≥ ‖U2S̃i − V2Si‖ = ‖U1C̃i − V1Ci‖
and

‖U1C̃i − V1Ci‖ ≥ ‖U1C̃iC
−1
i − V1‖ σmin(Ci).

Denoting U1 = R(U1) and using (2.12) and (2.16), we obtain

‖U1C̃i − V1Ci‖ ≥ (1− si) sin ∠(U1,V1).

Therefore

s̃i ≥ sin ∠(U1,V1)− si (1 + sin ∠(U1,V1)) .

As Xi → V1, si → 0, but there is no reason why s̃i → 0. In fact, s̃i/‖Ri‖ may increase
as sin ∠(U1,V1)/‖Ri‖, leading to a corresponding increase in ki given by (3.9). Such
an increase is shown in Figures 5.1 and 5.5, where an ILU preconditioner is applied
to two different examples. The above analysis shows that we do not have a result
like (3.11) for preconditioned solves. It also shows that as Xi → V1, a necessary
(but not sufficient) condition for a bound similar to (3.11) to hold for preconditioned
solves is sin ∠(U1,V1) ≈ 0; that is, V1 is almost an invariant subspace of AP−1. In
other words, the right-hand side of (4.1) is an approximate invariant subspace of the
iteration matrix AP−1.
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4.1. An “ideal” preconditioner. In this subsection we discuss the theoretical
case of U1 = V1. We shall see that a preconditioner which satisfies U1 = V1 is

(4.5) P = AV1V
∗
1 + P (I − V1V

∗
1 ),

which we call an “ideal” preconditioner. First, it is easy to see that PV1 = AV1 = V1L.
Thus, V1 is an invariant subspace of bothA and P. Moreover, the following proposition
shows that if P is a good approximation of A, then the spectrum of AP−1 should be
clustered near 1.

Proposition 4.1. Let P be given by (4.5) and assume A has the Schur decom-
position (2.2). Then the matrix AP−1 has the same eigenvalues as the matrix(

I V ∗
1 AP−1V ⊥

1

0 T22((V ⊥
1 )∗PV ⊥

1 )−1

)
.

Proof. We have
(
V1 V ⊥

1

)∗
AP−1

(
V1 V ⊥

1

)
=
(

V ∗
1 AP−1V1 V ∗

1 AP−1V ⊥
1

(V ⊥
1 )∗AP−1V1 (V ⊥

1 )∗AP−1V ⊥
1

)
.

Now observe that AP−1V1 = V1 and (V ⊥
1 )∗A = T22(V ⊥

1 )∗. Then

(
V1 V ⊥

1

)∗
AP−1

(
V1 V ⊥

1

)
=
(
I V ∗

1 AP−1V ⊥
1

0 T22(V ⊥
1 )∗P−1V ⊥

1

)
.

Finally, since PV ⊥
1 = PV ⊥

1 , we have(
(V ⊥

1 )∗P−1V ⊥
1

) (
(V ⊥

1 )∗PV ⊥
1

)
=
(
(V ⊥

1 )∗P−1V ⊥
1

) (
(V ⊥

1 )∗PV ⊥
1

)
= (V ⊥

1 )∗P−1(I − V1V
∗
1 )PV ⊥

1 = I.

Hence,
(
V ⊥

1 )∗P−1V ⊥
1

)
=
(
(V ⊥

1 )∗PV ⊥
1

)−1
.

If P is a good approximation of A, then (V ⊥
1 )∗PV ⊥

1 will be a good approximation
of T22, and hence the eigenvalues of AP−1 should be clustered around 1.

Now, assume that V1 is a simple invariant subspace of AP−1. This ensures the
existence of a block-diagonalization of the form

(4.6) AP−1 =
(
V1 U

)( I 0
0 K

)(
V1 U

)−1 with U∗U = I, sep(I,K) > 0.

Assume also that Xi can decomposed, for all i ≥ 0, in the form

(4.7) Xi = V1C̃i + US̃i with ε̃i := ‖S̃i‖ < 1.

Multiplying (2.13) and (4.7) on the left by W ∗
2 gives Si = W ∗

2US̃i. It is easy to see
that W ∗

2U is nonsingular and therefore that S̃i = (W ∗
2U)−1 Si. Assume Xi → V1,

so that ε̃i → 0 and there exists ε̃ < 1 such that ε̃i ≤ ε̃ for all i ≥ 0. Then, from
Proposition 2.1, we have

s̃i ≤ 1 + ‖S̃i‖
1− ‖S̃i‖

‖S̃i‖

≤ 1 + ε̃

1− ε̃ ‖(W
∗
2U)−1‖ si.

Now a proof similar to that of Proposition 3.8 shows that si/‖Ri‖, and therefore
s̃i/‖Ri‖, is bounded independent of i. This analysis shows that if the ideal precon-
ditioner were available, then we would be able to show that the iterations used by
block-GMRES should be independent of i as in Proposition 3.8.
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4.2. The “tuned” preconditioner. Of course, the ideal preconditioner cannot
be used in practice since V1 is unknown, so we replace P by the “tuned” preconditioner

(4.8) Pi = AXiX
∗
i + P (I −XiX

∗
i ),

where the V1 in (4.5) is replaced by Xi computed by Algorithm 1. This preconditioner
satisfies the tuning condition

PiXi = AXi.

This is a generalization of the condition proposed in [8] and [7] in the context of inexact
inverse iteration, but the motivation given here is different. Note that the tuned
preconditioner changes at each iteration i of Algorithm 1 and its quality improves
with that of Xi. Since PiXi = AXi = XiLi + Ri. We see that as Xi → V1, Ri → 0,
and so, in the limit, Pi has V1 as a invariant subspace. Also, the tuning condition can
be written as

(4.9) AP−1
i (AXi) = AXi,

which means that AXi is an invariant subspace of AP−1
i corresponding to the eigen-

value 1, which is a property shared with the ideal preconditioner given by (4.5). So
the tuned preconditioner also has the nice property of clustering around 1 at least
a part of the spectrum of AP−1

i . Asymptotically, that is, when Xi → V1, the tuned
preconditioner Pi will behave like the ideal preconditioner.

We now prove a result for the tuned preconditioner corresponding to that given
by Proposition 3.8 for unpreconditioned solves, namely, that the number of inner
iterations needed to achieve (4.2) will be independent of i. This is to be expected
given the closeness of AP−1

i to AP−1, and is exactly what is observed in the numerical
examples discussed in section 5.

Assume that Xi decomposes as

(4.10) Xi = V1Ci + V2Si with ‖Si‖ → 0 as i→∞
and define εi by

(4.11) εi = max
j≥i
‖Sj‖.

Note that the sequence εi is decreasing.
In order to prove a result similar to that of Proposition 3.8 for the tuned precon-

ditioned system, i.e., system (4.1) with Pi as preconditioner, we need the following
three lemmas.

Lemma 4.2. We have

XiX
∗
i = V1V

∗
1 + Ei, with ‖Ei‖ ≤ ‖Si‖ ≤ εi,(4.12)

and for εi small enough, there exist two positive constants α and β independent of i
such that

α sin∠(AXi,Xi) ≤ ‖Ri‖,(4.13)
‖AP−1 −AP−1

i ‖ ≤ β εi.(4.14)

Proof. We use the same notation as in the proof of Proposition 3.8. The property
(4.12) is a consequence of Proposition 2.1 and the fact that ‖Ei‖ = sin ∠(Xi,V1) (see
(2.11)).
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The columns of AXi (L∗
iLi +R∗

iRi)
− 1

2 form an orthonormal basis of AXi. There-
fore

sin∠(AXi,Xi) = ‖(I −XiX
∗
i )AXi (L∗

iLi +R∗
iRi)

− 1
2 ‖

= ‖Ri (L∗
iLi +R∗

iRi)
− 1

2 ‖
≤ ‖Ri‖/σmin(Li),

and as in Proposition 3.8,

σmin(Li) ≥ σmin(L)− 4‖A‖εi(1 + εi).

Then since εi is decreasing, there exists α > 0 independent of i, such that for εi small
enough

σmin(L)− 4‖A‖εi(1 + εi) ≥ α
and then

sin∠(AXi,Xi) ≤ ‖Ri‖/α.
From (4.5), (4.8), and (4.12) we have Pi = P + (A− P )Ei. Then

AP−1 −AP−1
i = AP−1 (Pi −P)P−1

i

= AP−1 (A− P )Ei (P + (A− P )Ei)
−1
,

‖AP−1 − AP−1
i ‖ ≤ ‖AP−1‖‖A− P‖‖Ei‖‖P−1‖

∥∥∥(I + P−1(A− P )Ei
)−1
∥∥∥

≤ ‖AP−1‖‖A− P‖‖P−1‖
1− ‖P−1(A− P )‖ ‖Ei‖‖Ei‖,

and the same argument used for α shows the existence of β independent of i such that

‖AP−1‖‖A− P‖‖P−1‖
1− ‖P−1(A− P )‖ ‖Ei‖ ≤

‖AP−1‖‖A− P‖‖P−1‖
1− ‖P−1(A− P )‖ εi ≤ β.

The following lemma shows that under some natural hypotheses, AP−1
i will have

a block-diagonalization close to that of AP−1 given in (4.6).
Lemma 4.3. Assume that V1 is a simple invariant subspace of AP−1. Then for

εi small enough, AP−1
i can be block-diagonalized as

(4.15) AP−1
i =

(
Ũi Ui

)( I 0
0 Ki

)(
Ũi Ui

)−1

with Ũ∗
i Ũi = I and U∗

i Ui = I and

‖K −Ki‖ ≤ c1εi,
sin ∠(U ,Ui) ≤ c2εi (U = R(U) and Ui = R(Ui)),

sin ∠(V1, Ũi) ≤ c3εi (Ũi = R(Ũi) = AXi),
where c1, c2, and c3 are positive constants independent of i.

Proof. Since V1 is a simple invariant subspace, we know that the block-
diagonalization (4.6) exists and [28, Thm. 2.8] and Lemma 4.2 can be used to compare
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the invariant subspaces of AP−1 and AP−1
i . Thus for εi sufficiently small, there exist

matrices Ui and Ki such that

AP−1
i Ui = UiKi with U∗

i Ui = I

and positive constants c1 and c2 independent of i such that

‖K −Ki‖ ≤ c1εi,
sin ∠(U ,Ui) ≤ c2εi.

From (4.9) it is clear that

Ũi = AXi

(
(AXi)

∗ (AXi)
)−1/2

satisfies AP−1
i Ũi = Ũi and Ũ∗

i Ũi = I. Moreover, there exists c3 independent of i such
that, for εi sufficiently small,

sin ∠(V1, Ũi) ≡ sin ∠(V1, AXi) ≤ c3εi,
because sin ∠(V1, AXi) ≤ sin∠(V1,Xi) + sin ∠(Xi, AXi) ≤ εi + ‖Ri‖/α, using(4.13),
and

‖Ri‖ = ‖(I −XiX
∗
i )AXi‖ ≤ ‖M‖‖Si‖+ ‖Ei‖‖A‖ ≤ 2‖A‖εi.

Since 1 is not an eigenvalue ofK, then for εi sufficiently small 1 cannot be an eigenvalue
of Ki. This shows the existence of the decomposition (4.15).

The next lemma shows the continuous dependence of a spectral projection on the
matrix.

Lemma 4.4. Let B and C be two matrices of the same size and Pγ(B) and
Pγ(C) the spectral projections onto the invariant subspaces of B and C corresponding
to the eigenvalues inside a closed contour γ. Assume that ‖B − C‖ ≤ ξ and let
mγ(B) = maxλ∈γ ‖(λI −B)−1‖. If ξmγ(B) < 1, then

‖Pγ(B) − Pγ(C)‖ ≤ 1
2π
lγ

ξm2
γ(B)

1− ξmγ(B)
,

where lγ is the length of γ.
Proof. See, e.g., [10, sect. 8.2].
We are now in a position to state and prove the key result in this paper.
Theorem 4.5. Let Xi be decomposed as in (4.10)–(4.11), where εi is also defined.

Assume that V1 is a simple invariant subspace of AP−1 and that the numerical range
of the matrix K in (4.6) satisfies the assumptions of Proposition 3.5.

Then, for small enough εi, the number ki of inner iterations used by block-GMRES
to compute Zki satisfying the stopping criterion

(4.16)
∥∥Xi −AP−1

i Zki

∥∥ ≤ τi = δ ‖Ri‖
is bounded independent of i.

Proof. Let φ and E be given by Proposition 3.5 applied to K (instead of M).
For small enough εi, Lemma 4.3 shows that the decomposition (4.15) holds and

Corollary 3.6 can be used with Ki to obtain a constant N̂ independent of i such that

min
p∈P̄k−1

‖p(Ki)‖ ≤ N̂
(

1
|φ(0)|

)k−1

.
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Decompose Xi in R(Ũi Ui) as

Xi = ŨiĈi + UiŜi

and, for εi small enough, define ŝi by ŝi = ‖ŜiĈ−1
i ‖‖Ĉi‖.

It is a simple task to show that the residual obtained with ki iterations of block-
GMRES starting with 0 is less than τi = δ‖Ri‖ if

ki ≥ 1 +
1

log |φ(0)|
(

log
(
N̂‖Ŝi‖

)
+ log

ŝi
δ‖Ri‖

)
,(4.17)

where ‖Ŝi‖ = ‖I −Ki‖ ≤ ‖I −K‖+ c1εi can be bounded independent of i since εi is
decreasing.

Now in order to show that ki can be bounded independent of i for small enough
εi, it remains only to show that the ratio ŝi/‖Ri‖ possesses this property.

From Proposition 2.1 we have

‖Ŝi‖ ≤ ‖P̂i‖ sin∠(Ũi,Xi) ≡ ‖P̂i‖ sin∠(AXi,Xi),

where P̂i is the spectral projection of AP−1
i onto Ũi.

We have

sin∠(AXi,Xi) ≤ sin ∠(AXi,V1) + sin ∠(V1,Xi) ≤ (c3 + 1)εi.

The term ‖P̂i‖ is bounded as

‖P̂i‖ ≤ ‖P̂ − P̂i‖+ ‖P̂‖,

where P̂ is the spectral projection of AP−1 onto V1. For small enough εi, (4.14) shows
that Lemma 4.4 can be applied. Taking, in this lemma, γ as the circle of center 1 and
radius εi, we obtain

‖P̂ − P̂i‖ ≤
βm2

γ(AP−1)
1− βmγ(AP−1)εi

εi.

Since εi is decreasing, we have for εi small enough

βm2
γ(AP−1)

1− βmγ(AP−1)εi
≤ c4

with c4 independent of i and hence

‖Ŝi‖ ≤ (c4εi + ‖P̂‖)(c3 + 1)εi ≤ c5εi with c5 =
(
‖P̂‖+ c4

)
(c3 + 1).

Finally from Proposition 2.1 and Lemma 4.2, we have for εi small enough

ŝi
‖Ri‖ ≤

1 + ‖Ŝi‖
1− ‖Ŝi‖

‖Ŝi‖
α sin ∠(AXi,Xi)

≤ 1 + ‖Ŝi‖
1− ‖Ŝi‖

‖P̂i‖
α

≤ 1 + c5εi
1− c5εi

c4εi + ‖P̂‖
α

.
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Since εi is decreasing, the last inequality shows that the ratio ŝi

‖Ri‖ is bounded inde-
pendent of i for small enough εi.

The numerical results illustrate this theorem, namely, that the number of itera-
tions is asymptotically independent of i; see Figures 5.1 and 5.5.

Note that instead of using right preconditioning, as in (4.1), left preconditioning
could have been used. A left preconditioner would also yield the necessary condition
that V1 should be an approximate invariant subspace of P−1A. However, the right-
hand side is now P−1Xi and so a “tuned” preconditioner (see (4.8)) is still necessary
to alter the eigendirections of the preconditioned right-hand side. The theory for left
preconditioning is essentially the same as for right preconditioning and is omitted.
Numerical results for tuned left preconditoning show the same improvements as for
tuned right preconditioning; see [8]. Finally, we note that the numerical results in [7]
are for symmetrically preconditioned systems.

5. Numerical tests. In this section we present some numerical tests to illustrate
the performance of Algorithm 1 when step 3 is replaced by the preconditioned block
system

(5.1) AP−1Zi = Xi, Yi = P−1Zi,

solved by block-GMRES with the tolerance τi = min(δ, δ‖Ri‖), δ = 10−3.
Any version of block-GMRES can be used to illustrate the theory. We have chosen

to use a new variant of block-GMRES which detects the near-dependence in the
corresponding block-Arnoldi basis and then adapts the block sizes accordingly. As a
consequence, this variant selects appropriate directions for convergence. See [19] for
details.

We compare two preconditioners:
• ILU preconditioner. P is obtained from the incomplete LU factorization of A

with a drop tolerance fixed at 10−1.
• Tuned preconditioner. Pi = P + FiX

∗
i , where Fi = AXi − PXi and P is as

above. In this case the computation of P−1
i in Yi = P−1

i Zi uses the Woodbury
formula (see [11]). Note that the application of P−1

i within block-GMRES
requires little extra work compared with the application of P−1, with the
additional work mainly needed at the outer step.

For each example, we give information on the spectrum of A, the block size p,
the dimension q of the computed invariant subspace Ṽ1 associated to the eigenvalues
near 0. We show the inner iterations for the two preconditioners and the norm of the
residuals, denoted by Γi, associated to the computed invariant subspaces.

Example 1. A is obtained with a five-point stencil and centered difference dis-
cretization of the convection diffusion operator (see [12]):

{ Au = Δu+ 10∂u∂x + 10∂u∂y on Ω = [0, 1]× [0, 1],
u = 0 on ∂Ω.

The matrix A is of order n = 2025 and has nz = 9945 nonzero elements, ‖A‖ =
16152, ‖A − P‖ = 1400. We use p = 6 and look for the invariant subspace Ṽ1 of
dimension q = 4. The computations stop when ‖Γi‖ < 10−8.

Figure 5.1 shows the inner iterations ki for the two preconditioners, and Figures 5.2
and 5.3 show the behavior of ‖Γi‖ during the outer iterations and compared with the
total number of inner iterations. The spectrum of A and the computed eigenvalues
are shown in Figure 5.4. Figure 5.1 illustrates well the theory: it shows that as the
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Fig. 5.1. Outer iterations against inner it-
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Fig. 5.4. Eigenvalues A (Example 1).

outer convergence proceeds, the number of inner iterations becomes independent of i
when the tuned preconditioner is used but increases when the standard ILU precon-
ditioner is used. Figure 5.2 illustrates that there is little difference in the performance
of the two preconditioners with regard to the residual norms in step 3 of Algorithm 1.
Figure 5.3 shows the dramatic improvement in overall cost achieved by the tuned pre-
conditioner, with the required tolerance being achieved at 12.65% of the cost needed
for the untuned preconditioner.

Example 2. A is the matrix QC2534 from the NEP set.1 This matrix is complex,
symmetric, and non-Hermitian. It is of order n = 2534 and has nz = 463360 nonzero
elements, ‖A‖ = 3.32, ‖A−P‖ = 0.41. We use p = 16 and look for the invariant sub-
space Ṽ1 of dimension q = 10. The computations stop when ‖Γi‖ < 10−8. Figure 5.5
compares the number of inner iterations for the ILU and tuned preconditioners. Fig-
ures 5.6 and 5.7 show the norm of the residual of the invariant subspace associated to
the q eigenvalues near 0. Figure 5.8 shows the spectrum of A and the computed eigen-
values. Similar comments apply as in Example 1. The tuned preconditioner requires
a roughly constant number of inner iterations per outer iteration (see Figure 5.5).

1see http://math.nist.gov/MatrixMarket/collections/NEP.html
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Finally, the overall costs for the tuned preconditioned system to achieve ‖Γi‖ < 10−8

are about 36.18% of the costs for the untuned preconditioner (see Figure 5.7).
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THE SPECTRUM OF A GLUED MATRIX∗

BERESFORD N. PARLETT† AND CHRISTOF VÖMEL‡

Abstract. A glued matrix can be obtained from a direct sum of p copies of an unreduced
symmetric tridiagonal matrix T by modifying the junctions by a glue γ, in one of two ways, so that the
new tridiagonal matrix has no zero off-diagonal entries. Despite being unreduced, a glued matrix can
have some eigenvalues agreeing to hundreds of decimal places. This makes glued matrices practically
useful as test matrices for tridiagonal eigensolvers such as inverse iteration and the MRRR algorithm.
However, the eigenvalue distribution of a glued matrix is a fascinating subject of theoretical interest
in its own right. By means of secular equations, this paper studies how width and placement of the
eigenvalue clusters of a glued matrix depend on T , on p, and on γ. Interlacing properties and the
question of eigenvalue repetition between T and a glued matrix are also investigated.

Key words. glued matrix, rank-1 gluing, rank-2 gluing, eigenvalue clusters, secular equation
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1. Introduction. This paper analyzes the eigenvalue distribution of real sym-
metric tridiagonal matrices of dimension pm that are constructed by gluing p copies
of a (smaller) tridiagonal T ∈ Rm×m together. Gluing is formally defined in Defi-
nition 2.1. Here we give a symbolic illustration. For p = 2, the direct sum is held
together by γ �= 0 at the junction in one of the two following ways:

G1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .

∗ ∗ ∗
∗ ∗ + γ γ

γ ∗ + γ ∗
∗ ∗ ∗

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(1.1)

G2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .

∗ ∗ ∗
∗ ∗ γ

γ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For p > 2, that is, more than two copies, the glue is inserted at each junction. We
want to consider γ as a perturbation, so we assume it to be reasonably small compared
to the other matrix entries.

Glued matrices are of great practical relevance as test matrices because their
spectra can have very tight clusters even when the glue γ is not particularly small.
We first encountered this phenomenon while investigating the behavior of the MRRR
algorithm on a matrix obtained from gluing five copies of the Wilkinson matrix W+

201;
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Fig. 1.1. An example of the structure of the eigenvalue clusters obtained for G1 (top) and
G2 (bottom) when gluing p = 2 to p = 7 copies of a matrix Vm to itself, where γ = 10−2. (The
matrix Vm is defined in section 2.) Shown are the resulting clusters of the respective glued matrices
in the neighborhood of an isolated eigenvalue λ̄ of the original matrix Vm (which is indicated by
the dashed vertical line). For G1, all except one eigenvalue form a cluster to the right of λ̄, with the
single remaining eigenvalue being seemingly very close to the location of λ̄. In the case of G2, the
eigenvalues are distributed around λ̄.

see [10]. The experiments in that paper showed that gluing can constitute a powerful
alternative to constructing unreduced tridiagonal matrices with tight eigenvalue clus-
ters via LAPACK’s test matrix generator [1, 9], Lanczos without reorthogonaliza-
tion [8, 16], or the solution of a tridiagonal inverse eigenvalue problem [11, 14, 19].

The original motivation for the present work was to provide theoretical under-
standing of the strong eigenvalue clustering that can be found in glued matrices.
However, this paper goes beyond this goal: we not only analyze the localization of
eigenvalues but also investigate interlacing properties and study the question of eigen-
value repetition between T and a glued matrix. To intrigue and motivate the reader,
Figure 1.1 is an illustrative example of the differences in the eigenvalue distributions
of G1 and G2 for increasing p and fixed γ.

Section 3 gives a first, qualitative picture of the spectrum of glued matrices, em-
phasizing interlacing properties. It is also investigated when the original T and a glued
matrix have eigenvalues in common. We prove that all eigenvalues of T are eigenvalues
of G1 and that T and G2 only share eigenvalues under special conditions stated there.

The quantitative analysis of G1 and G2 starts with section 4. We show the
existence of secular functions Γ1 and Γ2 whose zeros give the eigenvalues of G1 and G2,
respectively. Interestingly, Γ1 and Γ2 are the respective determinants of tridiagonal
matrices of rational functions, the former with a Toeplitz [6, 12] and the latter with
a rank-1 perturbed quasi-, or pseudo-, Toeplitz [2, 4, 15] structure. This is the key to
finding formulae for the eigenvalues of G1 and G2. The contribution of T to a cluster
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Fig. 1.2. An example of the cluster structures obtained for G1 (top) and G2 (bottom) when
gluing p = 2 to p = 7 copies of a matrix T to itself, where γ = 10−7. Shown are the resulting
clusters of the respective glued matrices in the neighborhood of a close pair of eigenvalues of the
original matrix T , indicated by dashed vertical lines. (The Wilkinson matrix W+

2n+1 is defined in
section 2.)

of the glued matrix can be described by its spectrum {λj} and certain associated
weights {ωj}. Together with γ and the number of copies p, these determine the
location and width of the cluster, or clusters, of G1 and G2.

Determining the cluster structure of G1 from the secular function Γ1 is quite easy.
However, we found it more difficult to analyze Γ2 and determine the clusters for G2.
A considerable part of this paper is thus devoted to elucidating the structure of the
clusters of close eigenvalues for G2. It pleased and surprised us that in the analysis, it
is possible to perform a local change of variable in each cluster. This yields an equation
with an interesting universal part Sp which captures the role of p in the distribution
of zeros within the cluster; see section 5. The clusters of zeros of G2 near an isolated
eigenvalue of T occur where the graph of Sp intersects with a certain hyperbola. These
intersections interlace with the poles of Sp which have a Chebyshev distribution, and
each zero sticks out further from its pole the closer it is to the center; see section 6.

This paper mainly focuses on the structure of an eigenvalue cluster of a glued
matrix close to an isolated eigenvalue of T . It is also interesting to study the spectrum
of a glued matrix when T has two close eigenvalues. To give the reader another
glimpse, Figure 1.2 plots the cluster structures for G1 and G2 around a close pair
of eigenvalues of the original tridiagonal. Section 3 makes some qualitative remarks
about this setting; see also the conclusions in section 7 for additional comments and
the technical report [17] for some analysis.

2. Notation, basic facts, and the definition of glued matrices. This
section introduces the notation and establishes basic facts about the eigenpairs of
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tridiagonal matrices needed for the analysis of glued matrices. We try to follow House-
holder notational conventions: capital Roman letters for matrices, lowercase Roman
letters for column vectors, and lowercase Greek letters for scalars and functions. We
denote by vt the transpose of column vector v.

Throughout this paper, we consider a real, symmetric tridiagonal matrix

(2.1) T := tridiag

(
β1 β2 ··· βm−2 βm−1

α1 α2 ··· ··· αm−1 αm

β1 β2 ··· βm−2 βm−1

)
that is unreduced (entries βi �= 0, i = 1, 2, . . . ,m− 1). Its spectral factorization is

(2.2) T = ZΛZt, Λ = diag(λ1, . . . , λm),

where the eigenvector matrix Z = [z1, z2, . . . , zm] is orthogonal, Zt = Z−1.
Fact 1 (see [16, Lemma 7.7.1]). The eigenvalues of T are simple, and we number

them such that

λ1 < λ2 < · · · < λm.

Note, however, that some eigenvalues may be indistinguishable on a computer; see
[10].

Fact 2 (see [16, Theorem 7.9.3]). Each eigenvector zi, i = 1, 2, . . .m, has
nonvanishing top and bottom entries zi(1) and zi(m).

Fact 3 (see [16, Corollary 7.9.1]). The product satisfies

(2.3) zj(1)zj(m) =

m−1∏
i=1

βi/χ
′(λj) =:

βπ

χ′(λj)

with βi from (2.1) and where χ(ζ) := det[ζI − T ] is the characteristic polynomial of
T and χ′ its derivative. Note that

sign (χ′(λj)) = sign

⎛⎝∏
i �=j

(λj − λi)

⎞⎠ = (−1)m−j .

Fact 4. Define the “weight”

(2.4) ωj := |zj(1)zj(m)|, j = 1, . . . ,m.

Then

m∑
1

(−1)m−jωj = ±et1ZZtem = 0,

0 <

m∑
1

ωj ≤ 1

2

m∑
1

(zj(1)2 + zj(m)2) = 1.

When T is persymmetric (T (i, j) = T (m + 1− j,m + 1− i)), then
∑m

1 ωj = 1.
Next, we define the glued matrices G1 and G2, formalizing the illustration in

(1.1). For any square matrix M , let M (p) := diag(M,M, . . . ,M) denote the direct
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sum of p copies. Define also two auxiliary matrices E1, Em ∈ R(mp)×(p−1):

(2.5) E1 :=

⎡⎢⎢⎢⎢⎢⎢⎣
0
e1 0

e1 ·
· ·
· 0

e1

⎤⎥⎥⎥⎥⎥⎥⎦ , Em :=

⎡⎢⎢⎢⎢⎢⎢⎣
em
0 em

0 ·
· ·
· em

0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where et1 = (1, 0, . . . , 0), etm = (0, 0, . . . , 0, 1) are vectors with m entries.
Definition 2.1. For unreduced T , p ≥ 2, and γ �= 0 define

G1(T, p, γ) := T (p) + γ(E1 + Em)(E1 + Em)t,(2.6)

G2(T, p, γ) := T (p) + γ(EmEt
1 + E1E

t
m).(2.7)

Furthermore, G1(T, 1, γ) := T =: G2(T, 1, γ).
Thus, at each junction in T (p) between two T s, we add a rank-1 (rank-2) update

to obtain G1 (G2). Correspondingly, we speak of rank-1 (rank-2) gluing of T .
Section 4 will show that the glued matrix G1 is easier to analyze than G2; much

of the theory resembles the analysis of the divide-and-conquer algorithm [3, 5, 13].
Remark 1. Because we wish to consider G1 and G2 as low rank modifications

of T (p) and not the other way around, we assume throughout this paper that |γ| is
reasonably bounded, for example, by the geometric mean of |βi|, i = 1, . . . ,m− 1.

Fact 5 (see [12, Example 7.4], [15]). The spectral decomposition of a symmetric
tridiagonal Toeplitz matrix of dimension m is

(2.8) Toep (a, b, a) = SDSt, D = diag

(
b + 2a cos

(
jπ

m + 1

))
,

and S is orthonormal with

(2.9) sij =

√
2

m + 1
sin

(
ij π

m + 1

)
, i, j = 1, . . . ,m.

Last, we recall the definition of a matrix introduced by Wilkinson in [18]:

(2.10) W+
2n+1 = tridiag

(
1 1 1 1 1 1 1

n n−1 ··· 1 0 1 n−1 n
1 1 1 1 1 1 1

)
.

W+
2n+1 is useful because its eigenvalues appear in pairs of varying closeness; the largest

pair differ by approximately 2/((n − 2)!)2. It also is persymmetric and thus has
|z(1, j)| = |z(2n+1, j)|, j = 1, 2, . . . , 2n+1, and

∑
ωj = 1. The leading n-dimensional

submatrix of W+
2n+1 is called Vn; its eigenvalues are all well separated from each other.

3. A qualitative analysis. Using results on eigenvalue monotonicity from [16],
this section gives a first crude picture of the effects of gluing and refines it.

3.1. Introductory comments. The first observation concerns the role of sign(γ).
Remark 2. G2(T, p, γ) and G2(T, p,−γ) have the same eigenvalues since they are

orthogonally similar to each other with respect to diag(Im,−Im, Im,−Im, . . .). Here
Im = [e1, e2, . . . , em] denotes the m×m identity matrix.

Furthermore, since trace (G2(T, p, γ)) = p · trace (T ), rank-2 gluing does not
change the average (arithmetic mean) of the eigenvalues. On the other hand, rank-1
gluing does change the average by 2γ(p− 1)/(mp), and the sign of γ does matter.
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The next result gives a first crude idea of the eigenvalues’ locations.
Remark 3. By (2.6), G1(T, p, γ) is a rank p−1 modification of T (p) whose nonzero

eigenvalues equal 2γ. By (2.7), G2(T, p, γ) is a rank 2(p−1) modification of T (p) whose
nonzero eigenvalues are ±γ. Weyl’s theorem [16, Theorem 10.3.1]) yields, for γ > 0,

(3.1) λj(G1) ∈ [λj(T
(p)), λj(T

(p)) + 2γ], λj(G2) ∈ [λj(T
(p))− γ, λj(T

(p)) + γ].

We note that G1 alters the first and last T differently from the others. One can
construct G2 by rank-1 gluing from the direct sum

diag
(
T − γemetm, T − γ(e1e

t
1 + emetm), . . . , T − γ(e1e

t
1 + emetm), T − γe1e

t
1

)
.

If one knows the eigenvalues of the perturbed T s, then no rank-2 gluing theory is
needed. However, we do not consider this a realistic point of view and assume that
only the spectrum of T is known.

3.2. Interlacing properties. This section gives some qualitative understanding
of Figures 1.1 and 1.2. Key is the following inductive construction of a glued matrix.

Remark 4. G1(T, p + 1, γ) (G2(T, p + 1, γ)) can be written as a rank-1 (rank-2)
modification of the direct sum S1 (S2) of T and G1(T, p, γ) (G2(T, p, γ)).

A special case of the rank theorem [16, Theorem 10.3.1, Corollary 10.3.1] is
needed.

Theorem 3.1. Let S1 and S2 be as in Remark 4, γ > 0, and let n := (p+ 1) ·m.
Then

λi (G1(T, p + 1, γ)) ∈
{

[λi(S1), λi+1(S1)] , i �= n,

[λn(S1), λn(S1) + 2γ], i = n.
(3.2)

λi (G2(T, p + 1, γ)) ∈ [λi−1(S2), λi+1(S2)] , i �= 1, n.(3.3)

First consider rank-1 gluing for p = 2. By definition (2.6),

G1(T, 2, γ) = T (2) + γ

(
em
e1

)(
etm et1

)
.

Since all eigenvalues of T (2) have multiplicity 2, all eigenvalues of T are also eigenvalues
of G1(T, 2, γ) by (3.2). Next, using the same argument together with Remark 4, we
also find that each eigenvalue of T is an eigenvalue of G1(T, 3, γ). Continuing by
induction, we obtain the following theorem.

Theorem 3.2. Any eigenvalue λ of a real unreduced m×m symmetric tridiagonal
T is also an eigenvalue of the rank-1 glued matrix G1(T, p, γ) for any γ and for p ≥ 2.

Application of the interlacing property (3.2) also explains the “chandelier” shape
of the clusters in rank-1 gluing with increasing p that one can see in Figure 1.1.
Furthermore, it shows that when T has two close eigenvalues, there will be a cluster
of G1 that is “squished” between them, as seen in Figure 1.2.

Rank-2 gluing satisfies weaker interlacing properties. Consider G2(T, 2, γ), a
rank-2 modification of T (2). By (3.3), G2(T, 2, γ) has an eigenvalue in each interval[
λi−1(T

(2)), λi+1(T
(2))
]
. Since all eigenvalues of T (2) have multiplicity 2, it follows

that G2(T, 2, γ) has two eigenvalues in each interval [λj(T ), λj+1(T )]. Now, using the
inductive construction from Remark 4, we find that the direct sum of G2(T, p, γ) and
T has four eigenvalues in the interval [λj(T ), λj+1(T )]; hence at least two eigenvalues
of G2(T, p + 1, γ) must lie in it. This proves the following lemma.

Lemma 3.3. For any p ≥ 2, there lie at least two eigenvalues of G2(T, p, γ) in
each closed interval [λj(T ), λj+1(T )] , j = 1, . . . ,m− 1.
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3.3. When G2 shares an eigenvalue with T . By Theorem 3.2, each eigen-
value of T is an eigenvalue of G1. For G2, the situation is more complicated and is
illuminated in Theorem 3.4. The first part gives a necessary and sufficient condition
for λ(T ) to be an eigenvalue of G2, independent of γ. By giving an explicit construc-
tion of the associated eigenvector, the second part shows that when T and G2 have a
common eigenvalue for a certain p, then by gluing additional copies one can find more
matrices with this property. We use M ′′ to denote the submatrix of a given matrix
M obtained by deleting the first and last rows and columns.

Theorem 3.4. Let λ, z denote an eigenpair of a real unreduced m×m symmetric
tridiagonal T .

• λ is an eigenvalue of G2(T, p, γ) for every γ �= 0 if and only if (λ,w′′) is an
eigenpair of [G2(T, p− 2, γ)]

′′
.

• If the previous condition holds for a certain p, then λ also is an eigenvalue of
G2(T, q, γ) for q = p + (p− 1), p + 2(p− 1), . . . , with eigenvector

(3.4) (ztφ1, γw
tφ2, z

tφ3, γw
tφ4, . . . , γw

tφ2k, z
tφ2k+1)

t,

where w := (0, (w′′)t, 0)t and φ1, . . . , φ2k+1 are nonzero scalars.
Proof. Consider (G2−λImp)x = 0 and, without loss of generality, choose x(1) :=

z(1) �= 0. The first equation determines x(2), the second x(3), and so on until equation
m− 1 determines x(m). This m-vector, call it z̃, satisfies (T − λI)z̃ = 0, and since λ
is simple, z̃ = z. Now examine equation m of (G2 − λImp)x = 0;

βm−1x(m− 1) + (αm − λ)x(m) + γx(m + 1) = 0.

Since βm−1x(m−1)+(αm−λ)x(m) = 0 and γ �= 0, we find x(m+1) = 0. Analogously,
starting from the bottom up with x(m · p) := z(m) �= 0 shows that the entry in the
row above the last copy of T , x((m − 1) · p), is zero. Note that when starting from
the top, from equation (m + 1)

w′′(1) := x(m + 2) = −γx(m)/β1 = −γz(m)/β1 �= 0.

Equations m + 2 to (m − 1) · p − 1 now have to hold, showing that (λ,w′′) is an
eigenpair of [G2(T, p− 2, γ)]

′′
.

Conversely, if (λ,w′′) is an eigenpair of [G2(T, p− 2, γ)]
′′
, it suffices to verify that

(ztφ1, 0, γ(w′′)tφ2, 0, z
tφ3)

t

with φ1 �= 0 is a nonzero vector from the kernel of (G2 − λImp).
For the last part of the theorem, observe that the construction of an eigenvector

for λ with alternating scalar multiples of z and w can be continued. Let the scaling
factors φi obey φ1 �= 0, and

(3.5) φ2k = −φ2k−1(z(m)/β1 w(2)), φ2k+1 = −φ2k(βm−1 w((m− 1) · p− 1)/z(1));

then (3.4) is an eigenvector of G2(T, q, γ), q = p + (k − 1)(p− 1).
Remark 5. G2(T, 2, γ) cannot have eigenvalues in common with T . The simplest

example of the special conditions from Theorem 3.4 occurs for the middle eigenvalue
λ2 = 0 of

T̃ :=

⎛⎝0 1 0
1 0 1
0 1 0

⎞⎠ .
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Then 0 is also an eigenvalue of G2(T̃ , 3, γ) for all γ. In general, if λ is an eigenvalue
of both T and T ′′, then for odd p, it is also an eigenvalue of G2(T, p, γ) for all γ.

Remark 6. It is interesting to examine what happens when we do not consider G2

simultaneously for all γ �= 0. Take a tridiagonal Toeplitz matrix T = Toep (a, b, a) ∈
Rm×m, glued to itself p times, with the special glue γ = a. G2(T, p, a) is (again) a sym-
metric Toeplitz matrix of order mp. By (2.8), the number of eigenvalues that T and G2

have in common equals | {i/(m + 1)|1 ≤ i < m + 1} ∩ {i/(mp + 1)|1 ≤ i < mp + 1} |.
Thus, when g denotes the greatest common divisor of m+ 1 and mp+ 1, the number
of eigenvalues that T and G2 have in common equals g − 1. In particular,

• when both m + 1 and mp + 1 are even, the two matrices have at least one
common eigenvalue, and
• when mp + 1 is a multiple of m + 1, all eigenvalues of T are also eigenvalues

of G2.

4. Governing rational functions. We derive rational functions whose zeros
yield those eigenvalues of G1(T, p, γ) and G2(T, p, γ) that are not already eigenvalues
of T . Let f := Zte1 and l := Ztem denote the first and the last row of the eigenvector
matrix Z of T . Further, from (2.5) obtain two mp× (p− 1) matrices

F = Z(p)tE1 =

⎡⎢⎢⎣
0
f ·
· 0

f

⎤⎥⎥⎦ , L := Z(p)tEm =

⎡⎢⎢⎣
l
0 ·
· l

0

⎤⎥⎥⎦ .
Again, F stands for first and L for last. Thus, Definition 2.1 yields

G1 = Z(p)[Λ(p) + γ(F + L)(F + L)t]Z(p)t,(4.1)

G2 = Z(p)[Λ(p) + γ(LF t + FLt)]Z(p)t.(4.2)

To replace mp×mp matrices by matrices of order (p− 1) or 2(p− 1), we invoke the
identity det[I + XY t] = det[I + Y tX] to find, for any ζ that is not an eigenvalue of
T ,

det [G1 − ζI] = det [Λ− ζI]
p
det
[
I(p−1) + γ(F + L)t(Λ(p) − ζI)−1(F + L)

]
and

det [G2 − ζI] = det
[
Λ(p) − ζI

]
det

[
Imp + γ(Λ(p) − ζI)−1(LF )

(
F t

Lt

)]
= det [Λ− ζI]

p
det

[
I2(p−1) + γ

(
F t

Lt

)
(Λ(p) − ζI)−1(LF )

]
.

Let the nilpotent (p−1)×(p−1) matrix

N = bidiag

(
1 1 · 1

0 0 · · 0

)
.

Further, for all possible combinations x, y ∈ {f, l}, define the rational functions

(4.3) ρxy(ζ) := xt(Λ− ζI)−1y =

m∑
j=1

xjyj
λj − ζ

.
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Note that ρfl = ρlf ; hence we simply write ρ. The special structure of F and L yields

det [G1 − ζI] = det [Λ− ζI]
p
det
[
(1 + γρff + γρll)I + (γρ)(N + N t)

]
(4.4)

and

det [G2 − ζI] = det [Λ− ζI]
p
det

[
I + γρN γρffI
γρllI I + γρN t

]
= det [Λ− ζI]

p
det
[
(I + γρN t)(I + γρN)− γ2ρffρllI

]
.(4.5)

The last matrix on the right of (4.4) is a tridiagonal Toeplitz matrix. Define

(4.6) Γ1(T, p, γ) := det [Toep (γρ, 1 + γ(ρff + ρll), γρ)] ;

then using the spectral decomposition (2.8), we have proved the next theorem.
Theorem 4.1. The eigenvalues of G1(T, p, γ) that are not eigenvalues of T are

zeros of the rational function

(4.7) Γ1(T, p, γ) =

p−1∏
k=1

{1 + γ
(
ρff (ζ) + ρll(ζ) + 2ρ(ζ) cos(kπ/p)

)}.
Corollary 4.2. When

(4.8) γ � min{λj+1 − λj , λj − λj−1} := gap(λj),

then the eigenvalues of G1 close to λj, other than λj itself, are to first order in γ,

(4.9) λj + γ{f2
j + l2j + 2(−1)m−j |fj lj | cos(kπ/p)}, k = 1, 2, . . . , p− 1.

In words, the cluster near λj is a Chebyshev distribution of radius 2|γ|ωj and center

λj + γ(f2
j + l2j ), fj = z

(1)
j , lj = z

(m)
j .

Proof. All rational functions from (4.3) share the same poles. Use the leading
terms of expansion (A.8) in Appendix A.2 for ρff (ζ), ρll(ζ), and ρ(ζ) in (4.7). Note
that because of (4.8), each factor from (4.7) contributes one of the zeros to find
(4.9).

The complication with G2 comes from the fact that in (4.5), N tN = Ip−1− e1e
t
1.

Instead of a Toeplitz matrix of rational functions as in (4.6), a rank-1 perturbed
quasi-, or pseudo-, Toeplitz [2, 4, 15] matrix governs rank-2 gluing. We have the next
theorem.

Theorem 4.3. The eigenvalues of G2(T, p, γ) that are not eigenvalues of T are
zeros of the rational function

(4.10) Γ2(T, p, γ) := det
[
Toepp−1

{
γρ, 1− γ2(ρffρll − ρ2), γρ

}− (γρ)2e1e
t
1

]
.

Unfortunately, there does not seem to be a simple representation for Γ2 in (4.10)
that would be as instructive as the one for Γ1 in Theorem 4.1. The characteristic
polynomial of N + N t − κe1e

t
1, for fixed κ, may be described as a sum of Chebyshev

polynomials of the second kind; see also [6, 7, 15]. However, the roots are not known
explicitly, which would be necessary for our application where κ is not fixed but is a
rational function.
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V matrix. Rank−2 gluing, p= 5. Roots of secular equation, n=5,glue = 0.01

Fig. 5.1. The secular function (5.3) around an isolated eigenvalue of the original matrix.

5. Approximative roots for rank-2 gluing. Even if they are not available ex-
plicitly, one can at least try to compute approximations of the roots of Γ2 from (4.10).
Because of the rank-1 perturbation, the following approach is guided by rank-1 gluing,
respectively, updating, theory. Observe that the poles of Γ2, which are the eigenvalues
of an (unperturbed) Toeplitz matrix, have a Chebyshev distribution. With

(5.1) ε(ζ) := ρff (ζ)ρll(ζ)− ρ2(ζ),

we find by (2.8) that Toep(γρ, 1 − γ2ε, γρ) = SMSt, with S according to (2.9), and
with M := diag(μ1, . . . , μp−1),

(5.2) μj = μj(ζ) := 1− γ2ε(ζ) + 2γρ(ζ) cos jψ, j = 1, . . . , p− 1, ψ := π/p.

From (4.10), we obtain with s := Ste1

Γ2(T, p, γ) = det[Toep−(γρ)2e1e
t
1] = det[S(M − (γρ)2sst)St]

= det[Ip−1 − (γρ)2M−1sst] det[M ] = [1− (γρ)2stM−1s]

p−1∏
i=1

μi(ζ).

The previous derivation assumes that M = M(ζ) is nonsingular at the eigenvalues of
G2. This is the generic and difficult case. We thus obtain the secular function

(5.3) Γ̃2(T, p, γ) := 1− (γρ)2stM−1s = 1− (γρ(ζ))2
2

p

p−1∑
k=1

sin2 kψ

μk(ζ)

whose zeros are the eigenvalues of G2 we seek. An illustration is given in Figure 5.1.
Note that ρ plays no role for p = 2. Section 4 directly shows Γ̃2 = 1−γ2ρff (ζ)ρll(ζ).

In this case, one can prove, similarly to Corollary 4.2, the following theorem.
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Theorem 5.1. When

(5.4) γ � min{λj+1 − λj , λj − λj−1} := gap(λj),

then the eigenvalues of G2(T, p = 2, γ) close to λj are to first order in γ,

(5.5) λj ± |γfj lj |.
In words, the cluster near λj is symmetrically distributed around λj.

For p > 2, one can determine the approximate location of the p − 1 poles of Γ̃2

stemming from the zeros of μ1, . . . , μp−1. Under assumption (5.4), an expansion of
(5.2) in the neighborhood of λj yields to first order

μk(ζ) ≈ 1 +
2γfj lj cos kψ

λj − ζ
.

Plugging this into (5.3) yields

(5.6) Γ̃2 ≈ 1− (λj − ζ) (γρ(ζ))2
2

p

p−1∑
k=1

sin2 kψ

(λj + 2γfj lj cos kψ)− ζ
.

This is a very crude approximation, and a more formal treatment of Γ̃2 is the topic
of section 6. Nevertheless, note that everything in the numerator of the second term
is positive, with the possible exception of the factor (λj − ζ). Thus, one can expect
mirroring behavior of the eigenvalues of G2 close to poles that are approximately op-
posite to each other with respect to λj . This is a microscopic version of Remark 2 that
observed that rank-2 gluing does not change the arithmetic mean of the eigenvalues.

5.1. A change of variables. A further analysis of Γ̃2 for p > 2 is quite com-
plicated. We rephrase (5.3) using the following change of variable ζ → α:

(5.7) α = α(ζ) :=
1− γ2ε(ζ)

−2γρ(ζ)
.

It is valid locally in each cluster.
Since cos(p− k)ψ = − cos kψ, sin(p− k)ψ = sin kψ for k < p/2, we find

sin2 kψ

μk(ζ)
+

sin2(p− k)ψ

μp−k(ζ)
= sin2 kψ

(
1

1− γ2ε + 2γρ cos kψ
+

1

1− γ2ε− 2γρ cos kψ

)
=

sin2 kψ 2(1− γ2ε)

(1− γ2ε)2 − (2γρ cos kψ)2
.

Hence, using (5.7) in (5.3), with the usual ψ = π/p, yields the secular equation

0 = Γ̃2(T, p, γ) = 1− 2

p
(γρ)2

p−1∑
k=1

sin2 kψ

μk(ζ)

= 1− (1− γ2ε)

⎧⎨⎩1

p

�p/2�∑
k=1

sin2 kψ

α2 − cos2 kψ

⎫⎬⎭ =: 1− (1− γ2ε)Sp(α).(5.8)

Sp(α) is a function of α2 and thus is symmetric around α = 0 with Sp(±1) =

p/2�/p. Its center α = 0 is given for ζ such that 1 = γ2ε(ζ). By (5.3), there are (p−1)
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Fig. 5.2. Intersections of Sp(α) and (1 − γ2ε)−1. The marks on the horizontal axis show the
eigenvalues of G2.

simple poles of Γ̃2, each from one μk, around the eigenvalue of T . When changing to
the α-variable, we become interested in the special ζ-intervals that include the poles
of Sp(α). By (5.8), these are the intervals in which α varies between ±1. For small

enough γ, the zeros of Γ̃2 occur close to solutions of Sp(α) = 1, that is, close to the
poles. Otherwise, the zeros are the intersections of Sp(α) and (1 − γ2ε)−1; see the
illustration in Figure 5.2.

6. Approximative zeros of Γ̃2. In this section, we express approximations to
the zeros of Γ̃2 in the α-coordinate. When p is even, all zeros are of the form λj+O(γ).
In contrast, when p is odd, there is one interior eigenvalue within O(γ)2 of λj . Note
that the zeros are roughly, but in general not exactly, symmetric about λj ; see also
Figure 5.2.

In more detail, a zero of Γ̃2 sticks out further from its pole the closer the pole
is to the center. The outer zeros, analyzed in section 6.1, are located at distance
±[cos2 kψ + O(sin2 kψ)]1/2, k = 1, 2, . . . , 
p/2� − 1. The description of the innermost
zeros is given in section 6.2 and requires an examination of ρ, ε, and the parity of p.

6.1. The outer zeros of Γ̃2. Consider (5.8). Except very close to the eigenvalue
λj , say, k = p/2−1 when p is even or (p−1)/2 when p is odd, (1−γ2ε)−1 = 1+O(γ)
in the intervals α ∈ ]− 1, 1[. For simplicity, we abbreviate (1 − γ2ε)−1 by ν in what
follows. It varies only slightly in each subinterval ] cos kψ, cos(k − 1)ψ[.

With sk := sin kψ, ck := cos kψ, Sp from (5.8) becomes

Sp(α) =
1

p

�p/2�∑
1

s2
k

α2 − c2k
.

To find an intelligible approximation to the solution of Γ̃2 = 0 between the poles
]ck, ck−1[, we model Sp by keeping the two neighboring poles and replacing the rest
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by a value independent of α:

S̃p(α) :=
1

p

(
s2
k

α2 − c2k
+

s2
k−1

α2 − c2k−1

)
+ S′′

p (βk),(6.1)

S′′
p (β) :=

1

p

�p/2�∑′′

i �=k,k−1

s2
i

β2 − c2i
.(6.2)

Here βk is a constant at our disposal; its default value is βk = ck, except when k = p/2.
We say more about S′′

p (βk) in Appendix B.

For α ∈ ]ck, ck−1[, write α = αk = [(1−σk)c
2
k +σkc

2
k−1]

1/2, 0 < σk < 1. Next, we

solve the quadratic (6.1) for σk. Substitute into S̃p(α) = ν to find

p(ν − S′′
p ) =

s2
k

σk(c2k−1 − c2k)
+

s2
k−1

(σk − 1)(c2k−1 − c2k)
, S′′

p = S′′
p (βk),

or

p(s2
k − s2

k−1)(ν − S′′
p ) =

s2
k

σk
− s2

k−1

1− σk
.

Thus σk is the smaller zero (0 < σ < 1) of the quadratic

(6.3) Akσ
2
k −Bkσk + s2

k = 0

with Ak = p(s2
k − s2

k−1)(ν − S′′
p ), Bk = Ak + (s2

k + s2
k−1). The discriminant is

(6.4) Δ := B2
k − 4Aks

2
k = (A′

k)
2 + (2sksk−1)

2

with A′
k := Ak − (s2

k − s2
k−1) = p(s2

k − s2
k−1)(ν − S′′

p − 1/p). The difficulty with (6.4)
is that the first term dominates for small k and the second one dominates for k close
to p/2.

Case k = 1, the outermost pair. The quadratic (6.3) can be solved exactly, giving
σ1 = s2

1/A1 = 1/p(ν − S′′
p ) and α2

1 = c21 + σ1(s
2
1 − s2

0) = c21 + s2
1/p(ν − S′′

p ). With
ν = 1 + O(γ) and S′′

p ≈ 1/2 (see Appendix B), one has

(6.5) α
(p−1)
j , α

(1)
j ≈ ±

√
cos2 ψ + 2 sin2 ψ/p.

Case 1 < k and 2|sksk−1| < |A′
k| in (6.4). Use

Δ = (A′
k)

2 + (2sksk−1)
2 = (A′

k)
2

[
1 +

1

2

(
2sksk−1

A′
k

)2

+ O

((
2sksk−1

A′
k

)4
)]

to find

(6.6) σk = (A′
k + 2s2

k −
√

Δ)/2Ak =
s2
k

Ak

[
1− s2

k−1

A′
k

+ O

(
s2
ks

4
k−1

(A′
k)

3

)]
.

The desired zeros of Γ̃2 satisfy

(6.7) α2
k == c2k + σk(s

2
k − s2

k−1) = c2k +
s2
k

p(ν − S′′
p (ck))

[
1− s2

k−1

A′
k

+ O

(
s2
ks

4
k−1

(A′
k)

3

)]
.
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Case k < p/2 and |A′
k| < 2|sksk−1| in (6.4). We use Δ = (2sksk−1)

2[1 +
(A′

k/2sksk−1)
2] so that

σk =
Ak + s2

k + s2
k−1 − (2sksk−1)[1 + 1

2 (A′
k/2sksk−1)

2 + · · · ]
2Ak

=
1

2
+

(sk − sk−1)
2

2Ak
− 1

4

(
A′

k

Ak

)(
A′

k

2sksk−1

)
+ O

((
A′

k

2sksk−1

)3
)
.(6.8)

We bound the second term on the right in (6.8). With A′
k < sksk−1,

s2
k − s2

k−1 <
sksk−1

p(ν − S′′
p − 1/p)

<
(sk + sk−1)

2

4p(ν − S′′
p − 1/p)

,

since 1
2sksk−1 ≤ 1

4 (s2
k + s2

k−1) and 1
2sksk−1 = 1

4 (2sksk−1). Thus

(6.9)
sk − sk−1

sk + sk−1
<

1

4p(ν − S′′
p − 1/p)

.

Hence one finds

(sk − sk−1)
2

Ak
<

(
1

2p(ν − S′′
p − 1/p)

)2

.

Since the third term in (6.8) is bounded by 1
4 · 1 · 1

2 · 1
8 , omitting the O term gives

3/8 < σk <
1

2
+

1

2(2p(ν − S′′
p − 1/p))2

,

(α
(p−1−k)
j )2 = (α

(k)
j )2 = (1− σk)c

2
k + σkc

2
k−1 = c2k + σk(s

2
k − s2

k−1)(6.10)

≈ c2k +
1

2
(s2

k − s2
k−1).

We collect in one place the results of this section.
Theorem 6.1. The cluster of eigenvalues of G2(T, p, γ) around an isolated eigen-

value λj of T , in the α variable, is given by (6.5), (6.7), (6.10) depending on the regime.
As k increases, the zero moves farther away from its pole toward pole k − 1.

6.2. The innermost zeros of Γ̃2.
Case 1: p odd. The previous section presented the p − 1 = 2[(p − 1)/2] zeros of

Γ̃2 associated with the p− 1 poles. There remains one more zero, ζ
(p)
j .

Sp(0) has the interesting negative finite value, from (5.8),

Sp(0) =
−1

p

(p−1)/2∑
k=1

tan2 k(π/p),

and, as is easily verified, S′
p(0) = 0. ε now enters the scene. In general ζ = λj is not

a zero of Γ̃2 because, from (A.6), α(λj) = O(γ) so that Sp is finite while ε(λj) =∞.

Yet close to λj , when α = 0, then 1− γ2ε = 0, and Γ̃2 sinks down to 1.

Theorem 6.2. When p is odd, the zero ζ
(p)
j of Γ̃2(T, p, γ) that is closest to an

isolated eigenvalue λj of T has the form

ζ
(p)
j = λj −

γ2ωjSp(0)E′
j

1− Sp(0) + γ2Sp(0)K ′
j

+ O(γ4ω2
j ).

See (A.11) for E′
j and K ′

j.
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Proof. From (A.10), near λj ,

ε(ζ) =
ωjE

′
j

λj − ζ
+ K ′

j + O

(
γ2ωj

gap(λj)

)
and, since α(λj) = O(γ),

Sp(α) = Sp(0) + O(α2) = Sp(0) + O(γ2).

Thus

Γ̃2(ζ) = 1− Sp(0)(1− γ2K ′
j) +

γ2ωjSp(0)E′
j

λj − ζ
+ O

(
γ2 +

γ2ωj

gap(λj)

)
.

Solve Γ̃2 = 0 for ζ, and the result follows.
Case 2: p even. There are p − 2 = 2(p/2 − 1) zeros of Γ̃2 associated with the

poles ± cos kπ/p, k = 1, 2, . . . , p/2 − 1. The bounds just above (6.10) apply, but the
dramatic difference from k < p/2 is that S′′

p (α) < 0 for 0 < α < s1 = sinπ/p, and
|S′′

p | = O(p). Since ν = 1+O(pγ) we find that, for large p, ν−S′′
p ≈ |S′′

p | and in these
cases αp/2 is very close to the smallest zero of Sp (i.e., ν = 0):

σp/2 < 1/2[1 + (2p (ν + |S′′
p | − 1/p))−2],

αp/2 = ±(O +
√
σp/2 sinπ/p) ≈ ± 1√

2
sin

π

p
.

Theorem 6.3. When p is even, the two zeros of Γ̃2(T, p, γ) closest to an isolated
eigenvalue λj of T are, to first order in γωj,

(6.11) λj ± γωj
1√
2

sin
π

p
.

7. Summary and conclusions. Our initial interest in glued matrices stemmed
from their importance as test matrices for tridiagonal eigensolvers such as inverse
iteration and the MRRR algorithm. However, beyond their practical significance,
these matrices offer a number of interesting theoretical points of study.

In this paper, we first investigated qualitative issues such as interlacing and eigen-
value repetition. Then we derived secular equations for rank-1 and rank-2 gluing and
exhibited connections to tridiagonal Toeplitz matrices. Under the assumption of a
small enough glue, we established expressions for the location of the eigenvalues clus-
tered around an isolated eigenvalue of T . In the difficult analysis of rank-2 gluing, we
used a change of variables to find approximations.

Even though it is interesting, this paper was only briefly concerned with the
spectrum of a glued matrix when T has two close eigenvalues. We refer the interested
reader to the technical report [17] for some (quite technical) analysis of this case.

Appendix A. Analysis of important rational functions.

A.1. Analysis of ρ and ε. Use of the weights ωj from (2.4) in (4.3) yields

(A.1) ρ(ζ) = ρfl(ζ) = f t(Λ− ζI)−1l =

m∑
i=1

(−1)m−iωi

λi − ζ
.
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Use (2.3) to write

(A.2) ρ(ζ) = −
m∑
i=1

βπ

χ′(λi)(ζ − λi)
= − βπ

χ(ζ)
.

The last part of (A.2) follows by recognizing that the sum is a partial fraction expan-
sion of χ(ζ). As a consequence, ρ(ζ) never vanishes.

From (5.1), find

(A.3) ε(ζ) =
∑
μ

zμ(1)2

λμ − ζ

∑
ν

zν(m)2

λν − ζ
−
∑
μ

(−1)m−μωμ

λμ − ζ

∑
ν

(−1)m−νων

λν − ζ
.

Observe that terms in (λμ−ζ)−2 in (A.3) cancel, leaving terms in (λμ−ζ)−1(λν−ζ)−1,
ν < μ, where the numerator is

zμ(1)2zν(m)2 + zν(1)2zμ(m)2 − 2zμ(1)zμ(m)zν(1)zν(m)

= [zμ(1)zν(m)− zμ(m)zν(1)]
2

= ωμων

[
(−1)m−ν

√∣∣∣∣zμ(1)zν(m)

zμ(m)zν(1)

∣∣∣∣− (−1)m−μ

√∣∣∣∣zμ(m)zν(1)

zμ(1)zν(m)

∣∣∣∣
]2

= ωμων

(∣∣∣∣zμ(1)zν(m)

zμ(m)zν(1)

∣∣∣∣+ ∣∣∣∣zμ(m)zν(1)

zμ(1)zν(m)

∣∣∣∣− 2(−1)μ+ν

)
= ωμωνgμν , defining gμν = gνμ.(A.4)

Note that gμν ≥ 0 with equality when zν(m)
zν(1) =

zμ(m)
zμ(1) and μ + ν := 0 (mod 2). In

general gμν ≥ 4 when μ + ν := 1 (mod 2). In the persymmetric case

gμν =

{
0, μ + ν := 0 (mod 2),

4, μ + ν := 1 (mod 2).

Thus

(A.5) ε(ζ) =
m∑ m∑
ν<μ

ωμωνgμν
(λμ − ζ)(λν − ζ)

.

Since ε and ρ have the same poles, α from (5.7) is well defined at λj .
For isolated λj , γ � gap(λj),

α(λj) = lim
ζ→λj

1− γ2ε

−2γρ
= γωj

∑
i �=j

ωigij
λi − λj

÷ 2ωj(−1)m−j

=
1

2
γ(−1)m−j

∑
i �=j

ωigij
λi − λj

.(A.6)

Thus |α(λj)| = O(γ) < 1 and λj is inside a special interval.

A.2. ρ and ε near an isolated zero λj. Throughout this analysis
∑′

indicates
omission of one index value in the sum, usually j. For ζ near λj write

(A.7) (λi − ζ)−1 = (λi − λj)
−1

[
1 +

ζ − λj

λi − λj
+

(
ζ − λj

λi − λj

)2

+ O

(∣∣∣∣ ζ − λj

gap(λj)

∣∣∣∣3
)]

.
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Insertion into (4.3) yields

(A.8) ρxy(ζ) =
xkyk
λj − ζ

+
∑
i �=j

xiyi
λi − λj

+ O

(∣∣∣∣ λj − ζ

gap2(λj)

∣∣∣∣) .

Hence, from (A.1),

(A.9) ρ(ζ) =
(−1)

m−j
ωj

λj − ζ
+ R′

j + O

(∣∣∣∣ ζ − λj

gap(λj)2

∣∣∣∣) , R′
j :=

∑
i �=j

(−1)m−iωi

λi − λj
,

and, from (A.5),

ε(ζ) =
ωj

λj − ζ

∑′ ωigij
λi − λj

[
1 +

ζ − λj

λi − λj
+ O

(∣∣∣∣ ζ − λj

λi − λj

∣∣∣∣2
)]

+
∑′ ∑′

ν<μ

ωμωνgμν
(λμ − λj)(λν − λj)

[
1 +

ζ − λj

λμ − λj
+ O

(∣∣∣∣ λj − ζ

gap(λj)

∣∣∣∣2
)]

×
[
1 +

ζ − λj

λμ − λj
+ O

(∣∣∣∣ λj − ζ

gap(λj)

∣∣∣∣2
)]

=
ωj

λj − ζ
E′

j + K ′
j + O

(∣∣∣∣ λj − ζ

gap(λj)

∣∣∣∣)(A.10)

with

E′
j :=

∑′ ωigij
λi − λj

,(A.11a)

K ′
j :=

∑′ ∑′

ν<μ

ωμωνgμν
(λμ − λj)(λν − λj)

− ωj

∑′ ωigij
(λi − λj)2

.(A.11b)

Note that in this case, ρ and ε have comparable residues at the pole λj and comparable
constant terms. We can find ζ0 such that α = 0: using 1− γ2ε(ζ0) = 0 and the first
two terms of (A.10),

(A.12) λj − ζ0 = γ2ωjE
′
j/(1− γ2K ′

j).

Thus ζ0 = λj + O(γ2ωj).

Appendix B. Analysis of S′′
p , p even.

This section gives supporting material for the analysis in section 6.1. Recall the
abbreviations ck = cos kψ, sk := sin kψ; then from (6.2),

S′′
p (α) :=

1

p

p/2∑
j �=k−1,k

j=1

s2
j

α2 − c2j
when ck < α < ck−1.
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Consider the case k = 1, the outermost pair:

L1 :=
1

p
(1 + 1 + · · ·+ 1) < S′′

p <
1

p

(
4

3
+

9

8
+

16

15
+ · · ·+ 1

cos2 π/p

)
=: U1,

U1 <
1

p

[
p

2
− 1 +

∞∑
2

(n2 − 1)−1

]

=
1

p

[
p

2
− 1 +

∞∑
2

(n−2 + n−4 + n−6 + · · · )
]

=
1

p

[
p

2
− 1 +

(
π2

6
− 1

)
+

(
π4

90
− 1

)
+ · · ·

]
≈ 1

p

[
p

2
− 1 +

2

3
+

1

9
+ · · ·

]
≈ 1

2
,

1

2
− 1

2p
< S′′

p <
1

2
.

At the other extreme, k = p/2, on (cos π
p , 1) each term is negative:

Lp/2 :=
1

p

{
c22
s2
2

+
c23
s2
3

+ · · ·+ s2
1

c21

}
< −S′′

p

<
1

p

(
c22

s2
2 − s2

1

+
c23

s2
3 − s2

1

+ · · ·+ s2
1

c21 − s2
1

)
=: Up/2,

Lp/2 ≈ 1

p

{(
p2

4π2
− 1

)
+

(
p2

9π2
− 1

)
+ · · · π

2

p2

}
=

1

p

{
p2

π2

[
1

4
+

1

9
+ · · ·+

(
4

p

)2
]
− p

4
+ O(1)

}

≈ 1

p

{
p2

π2

(
π2

6
− 1

)
− p

4
+ O(1)

}
≈ O(p/15).

Computer studies (for p ≤ 100) show that as k increases, S′′
p rises gently from just

below 1
2 to just above 1

2 at k = p/4 and then declines toward 0. Only at k = p/2 is
S′′
p < 0.

Acknowledgments. Many thanks to the anonymous referees and the editor for
their help with this manuscript.
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ACCURACY OF THE JACOBI METHOD ON SCALED
DIAGONALLY DOMINANT SYMMETRIC MATRICES∗

J. MATEJAŠ†

Abstract. This paper proves that the two-sided Jacobi method computes the eigenvalues of
the indefinite symmetric matrix to high relative accuracy, provided that the initial matrix is scaled
diagonally dominant. It proves sharp eigenvalue perturbation bounds coming from a single Jacobi
step and from the whole sweep defined by the serial pivot strategies.

Key words. symmetric matrices, eigenvalues, Jacobi method, scaled diagonally dominant ma-
trices, relative accuracy

AMS subject classifications. 65F15, 65G05

DOI. 10.1137/070685993

1. Introduction and notation. It is known (see [2]) that the two-sided Jacobi
method computes the eigenvalues and eigenvectors of the positive definite symmetric
matrices to high relative accuracy, as high as the initial matrix and the computer
arithmetic allow. Numerical tests lead to the presumption that the same is true if
the positive definite matrices are replaced with indefinite symmetric, but sufficiently
almost diagonal matrices. This paper proves that the two-sided Jacobi method com-
putes the eigenvalues of an α-scaled diagonally dominant (α-s.d.d.) symmetric matrix
to high relative accuracy, provided that α is sufficiently small. Let us recall that
the Hermitian matrix H is α-s.d.d., 0 ≤ α < 1, with respect to a norm || · || if
||D−1off(H)D−1|| ≤ α, where D = |diag(H)|1/2. Here diag(H) is the diagonal matrix
with the same diagonal as H and off(H) = H − diag(H) (see [1]).

This fact is not a surprise for several reasons. First, almost diagonal symmetric
matrices share many properties with positive definite matrices. Say, changing the signs
of all negative diagonal elements of a strictly diagonally dominant symmetric matrix
makes the matrix positive definite. Then, for small enough α, α-s.d.d. symmetric
matrices are well behaved. This result was proved in [1] and was later improved in [7].
This means that certain classes of small symmetric perturbations can cause only small
relative errors in all eigenvalues and eigenvectors. Finally, when the Jacobi method is
applied to a well-behaved symmetric positive definite matrix in finite arithmetic, it
produces rounding errors which fit well into the new theory of relative perturbations.
Therefore, one can expect that the Jacobi method behaves similarly for the indefinite
almost diagonal symmetric matrices. Indeed, from [7, Theorem 3.1] it follows that for
α-s.d.d. symmetric matrices, with small enough α, the proper measure for the relative
error in the eigenvalues is η = ||D−1δHD−1||2, where D = |diag(H)|1/2. Together
with Theorems 6 and 7 from this paper, it implies the relative accuracy of the Jacobi
method on such matrices (Corollary 11).

It is known that the Jacobi method is not accurate for general indefinite symmet-
ric matrices. If accurate eigenvalues and eigenvectors are wanted for such matrices,
one can either follow the idea of Veselić to factorize the indefinite symmetric H as

∗Received by the editors March 22, 2007; accepted for publication (in revised form) by J. L.
Barlow May 12, 2008; published electronically February 27, 2009.

http://www.siam.org/journals/simax/31-1/68599.html
†Faculty of Economics, University of Zagreb, Kennedyjev trg 6, 10000 Zagreb, Croatia (josip.

matejas@kr.htnet.hr).
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FJFT and then apply the J-symmetric Jacobi-type method to the pair (FTF, J)
(see [10], [12], [11]), or follow the ideas from [3] to devise an SVD (singular value
decomposition)-based algorithm. Differences, shortcomings, and advantages of each
of these approaches are discussed in [3].

Here we show that the simple two-sided Jacobi method is accurate if the starting
indefinite symmetric matrix is sufficiently almost diagonal. In particular, we show
that for the α-s.d.d. H , the errors in the eigenvalues, produced during one sweep are
bounded by (2n − 3) (258.67α+ 2.47)u, where u is the roundoff unit. The bound is
somewhat better than the one obtained in [2] for positive definite matrices, especially
if one takes into account that α tends to zero as the process advances. In addition,
as is explained in Remark 12, the constant part of the bound, 2.47(2n − 3)u, can
be reduced to just u if the known trick of Rutishauser [8] is used. For Jacobi to
achieve this accuracy we use the stopping criterion “if |hij | ≤ 2u · |hiihjj |1/2, then
set hij = 0” (here u is a small threshold value, usually machine precision). This is a
slightly modified version of the stopping criterion for positive definite matrices from
[2], [8].

Although the presented error analysis corresponds to real arithmetic, similar re-
sults can be expected for complex Hermitian scaled diagonally dominant matrices.

Throughout this paper, we use the following notation. For any square matrix X ,
diag(X) stands for the diagonal matrix having the same diagonal as X , and off(X) =
X − diag(X) denotes the off-diagonal part of X . By ‖ · ||2 and ‖ · ‖F we denote
the spectral and the Frobenius (Euclidean) matrix norm, respectively. The Euclidean
vector norm is also denoted by ‖ · ‖2.

This paper is organized as follows. In section 2 we present the simple code of the
Jacobi algorithm which we analyze in the paper. In section 3 we derive some auxiliary
accuracy results. The main accuracy results are proved in section 4.

2. The Jacobi algorithm. Let H be a symmetric matrix of order n. A single
Jacobi step annihilates the pivot element at position (i, j), i < j, by the similarity
transformation H ′ = UTHU , where U is a rotation in the plane (i, j). On the level of
2× 2 pivot submatrices, we have H̃ ′

ij = ŨTij H̃ij Ũij , where H̃ ′
ij = diag(h′ii, h

′
jj),

H̃ij =
[
hii hij
hji hjj

]
≡
[
a c
c b

]
, Ũij ≡

[
uii uij
uji ujj

]
=
[

cs sn
−sn cs

]
.(2.1)

Thus, the sine and cosine of the rotation angle are denoted by sn and cs and in general
H ′ = (h′lm). The Jacobi algorithm has the following form (see [2]).

Algorithm 1.

repeat
select the pivot pair (i, j) with i < j % according to the pivot strategy
a = hii; b = hjj ; c = hij = hji

% compute the Jacobi rotation
ξ = (b− a)/(2c)
t = sgn(ξ)/(|ξ|+

√
1 + ξ2)

ω =
√

1 + t2

cs = 1/ω ; sn = t/ω
% update the 2× 2 submatrix
d = c ∗ t
h′ii = a− d ; h′jj = b+ d
h′ij = 0; h′ji = 0
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% update the rest of rows and columns i and j
for k = 1 to n except i and j
tmp = hik
h′ik = cs ∗ tmp− sn ∗ hjk
h′jk = sn ∗ tmp+ cs ∗ hjk
h′ki = h′ik ; h′kj = h′jk

endfor
until convergence

3. Some auxiliary accuracy results. We assume the following notation:
• u denotes the machine precision according to the IEEE standard,

u ∈ {2−23, 2−24, 2−52, 2−53, 2−64
}
.(3.1)

• ε is a quantity whose absolute value is bounded above by u. It may be sub-
or superscripted. It mostly appears after one arithmetic operation.
• ε is a quantity whose absolute value can be larger than u. It may be sub- or

superscripted.
• η is a quantity whose absolute value is O(u2). It may be sub- or superscripted.

It usually denotes the nonlinear part of the error.
We use a standard model of computer arithmetic where the floating point result fl(a◦b)
of the basic arithmetic operation ◦ is given by

fl(a± b) = (a± b)(1 + ε1), fl(a · b) = (a · b)(1 + ε2),
fl(a/b) = (a/b)(1 + ε3), fl(

√
a) =

√
a(1 + ε4),

where, according to our notation, |εi| ≤ u, i = 1, 2, 3, 4. Here εi depends on the
operand(s) and the operation.

In the following results we give exact error estimates without rounding or neglect-
ing nonlinear terms. For example we shall write (1 + ε1)(1 + ε2) = 1 + ε1 + η1, where
ε1 = ε1 + ε2 stands for the linear part and η1 = ε1ε2 denotes the nonlinear part of
the computed error. To make further analysis easier and clearer we also separate the
error of the initial data in a similar way, say y = (1 + εx + ηx)x. Here εx denotes the
main (say, linear) part of the error and ηx = O(u2). But the results also hold if we
assume that the whole error is εx (ηx = 0) or ηx (εx = 0).

Lemma 2. Let y = (1 + εx + ηx)x and z =
√

x2

1+x2 . Then

(i) fl(y2) = (1 + ε1 + η1)x2,

where ε1 = ε1 + 2εx,

η1 = 2ηx + 2ε1(εx + ηx) + (1 + ε1)(εx + ηx)2,

(ii) fl(1 + y2) = (1 + ε2 + η2)(1 + x2),

where ε2 = ε2 + z2ε1 = ε2 + z2(ε1 + 2εx),
η2 = z2[η1 + ε2(ε1 + η1)],

(iii) fl
(√

1 + y2
)

= (1 + ε3 + η3)
√

1 + x2,

where ε3 = ε3 +
ε2

2
= ε3 +

ε2
2

+ z2
(ε1

2
+ εx

)
,

η3 =
η2
2

+
ε2 + η2

2
ε3 − (1 + ε3)(ε2 + η2)2

4(1 +
√

1 + ε2 + η2) + 2(ε2 + η2)
,
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(iv) fl
(
|y|+

√
1 + y2

)
= (1 + ε4 + η4)

(
|x|+

√
1 + x2

)
,

where ε4 = ε4 +
z

1 + z
εx +

1
1 + z

ε3

= ε4 +
1

1 + z

(
ε3 +

ε2
2

)
+

z2

1 + z
· ε1

2
+ zεx,

η4 =
1

1 + z
η3 +

z

1 + z
ηx +

z(εx + ηx) + ε3 + η3
1 + z

ε4,

(v) fl

(
y√

1 + y2

)
= (1 + ε5 + η5)

x√
1 + x2

,

where ε5 = ε5 − ε3 + εx = ε5 − ε3 − ε2
2
− z2

2
ε1 +

1
1 + x2

εx,

η5 = ηx + ε5(εx + ηx − ε3)− (1 + ε5)ε3(εx + ηx)

+ (1 + ε5)(1 + εx + ηx)
(

(ε3 + η3)2

1 + ε3 + η3
− η3

)
.

Proof. (i) This assertion follows from the equality

fl(y2) = (1 + ε1)y2 = (1 + ε1)(1 + εx + ηx)2x2

=
[
1 + ε1 + 2εx + 2ηx + 2ε1(εx + ηx) + (1 + ε1)(εx + ηx)2

]
x2.

(ii) Here we use the equality

fl(1 + y2) = (1 + ε2)[1 + fl(y2)] = (1 + ε2)[1 + (1 + ε1 + η1)x2]

= (1 + ε2)
[
1 +

x2

1 + x2
(ε1 + η1)

]
(1 + x2)

=
[
1 + ε2 +

x2

1 + x2
(ε1 + η1) +

x2

1 + x2
ε2(ε1 + η1)

]
(1 + x2).

(iii) Using the identity
√

1 + τ = 1 + τ
2 − τ2

4(1+
√

1+τ)+2τ
, τ ≥ −1, the assertion

follows from

fl
(√

1 + y2
)

= (1 + ε3)
√

fl(1 + y2) = (1 + ε3)
√

(1 + ε2 + η2)(1 + x2)

= (1 + ε3)
[
1 +

ε2 + η2
2

− (ε2 + η2)2

4(1 +
√

1 + ε2 + η2) + 2(ε2 + η2)

]√
1 + x2

=
[
1 + ε3 +

ε2

2
+
η2
2

+
ε2 + η2

2
ε3 − (1 + ε3)(ε2 + η2)2

4(1 +
√

1 + ε2 + η2) + 2(ε2 + η2)

]√
1 + x2.

(iv) Here we use

fl
(
|y|+

√
1 + y2

)
= (1 + ε4)

[
|y|+ fl

(√
1 + y2

)]
= (1 + ε4)

[
(1 + εx + ηx)|x|+ (1 + ε3 + η3)

√
1 + x2

]



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCURACY OF THE JACOBI METHOD 137

= (1 + ε4)

[
1 +

(εx + ηx)|x|+ (ε3 + η3)
√

1 + x2

|x|+√1 + x2

]
(|x| +

√
1 + x2)

= (1 + ε4)
[
1 +

z(εx + ηx) + ε3 + η3
1 + z

]
(|x|+

√
1 + x2)

=
[
1 + ε4 +

zεx + ε3

1 + z
+
zηx + η3

1 + z
+
z(εx + ηx) + ε3 + η3

1 + z
ε4

]
(|x|+

√
1 + x2).

(v) Using the identity

1
1 + τ

= 1− τ +
τ2

1 + τ
, τ 
= −1,(3.2)

the desired assertion follows from

fl

(
y√

1 + y2

)
= (1 + ε5)

y

fl
(√

1 + y2
) = (1 + ε5)

1 + εx + ηx
1 + ε3 + η3

· x√
1 + x2

= (1 + ε5)(1 + εx + ηx)
[
1− ε3 − η3 +

(ε3 + η3)2

1 + ε3 + η3

]
x√

1 + x2

=
[
(1 + ε5)(1 + εx + ηx)(1− ε3)

+ (1 + ε5)(1 + εx + ηx)
(

(ε3 + η3)2

1 + ε3 + η3
− η3

)]
x√

1 + x2

=
[
1 + ε5 − ε3 + εx + ηx + ε5(εx + ηx − ε3)− (1 + ε5)ε3(εx + ηx)

+ (1 + ε5)(1 + εx + ηx)
(

(ε3 + η3)2

1 + ε3 + η3
− η3

)]
x√

1 + x2
,

which completes the proof.
The error estimates for the reciprocal expressions of those in Lemma 2, i.e., for

1/y2, 1/(1+y2), 1/
√

1 + y2, and 1/(|y|+
√

1 + y2), can be obtained from the following
more general result.

Lemma 3. Let y = (1 + εx + ηx)x and fl (F (y)) = (1 + εF + ηF )F (x), where F
is any continuous function. If F (x) 
= 0 and G(x) = 1/F (x), then

fl (G(y)) = (1 + εG + ηG)G(x),

where εG = ε6 − εF , ηG = (1 + ε6)
( (εF +ηF )2

1+εF +ηF
− ηF

)− ε6εF .
Proof. The proof uses a similar argument as in the proof of Lemma 2(v). Using

the identity (3.2), we have

fl
(

1
F (y)

)
= (1 + ε6)

1
fl(F (y))

= (1 + ε6)
1

1 + εF + ηF
· 1
F (x)

= (1 + ε6)
[
1− εF − ηF +

(εF + ηF )2

1 + εF + ηF

]
1

F (x)

=
[
1 + ε6 − εF − ε6εF + (1 + ε6)

(
(εF + ηF )2

1 + εF + ηF
− ηF

)]
1

F (x)
,

which yields the desired estimate.
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4. Accuracy of the Jacobi method.

4.1. The estimates for one step. We know that the sequence of matricesH(k),
k ≥ 0, and H(0) = H are generated by the Jacobi method converges to a diagonal
matrix. Thus we have ||off(H(k))||F → 0. It means that the off-diagonal elements
h

(k)
pq , p 
= q, become smaller in modulus. Since ξk = (h(k)

jj − h(k)
ii )/(2h(k)

ij ) = cot 2ϕk,

the same is true for the rotation angle ϕk, provided that h(k)
ii and h

(k)
jj (a and b in

Algorithm 1) do not converge to the same limit. Thus, |ξk| (|ξ| in Algorithm 1) will
increase. So, it appears desirable to bound | tan 2ϕk| = 1/|ξk| above by a fixed value
τ and to express the error estimates as a function of τ . As we know that τ can be
decreased with each cycle of the method, we shall be able to trace the movements of
the error bounds depending on τ . We also introduce in ξk the initial error which is
caused by previous computations.

In the following lemma we use the same notation for the errors as in Lemma 2.
Since εi, ηi, i = 1, 2, 3, 4, 5 from Lemma 2 are obtained starting with y = (1+εx+ηx)x,
we can consider them to be the functions, i.e., εi = εi(x, εx, ηx), ηi = ηi(x, εx, ηx),
i = 1, 2, 3, 4, 5. In the same way we treat εG and ηG from Lemma 3, εG = εG(εF , ηF ),
ηG = ηG(εF , ηF ).

Lemma 4. Let τ be such that 1/|ξ| ≤ τ in Algorithm 1, and let fl(ξ) = (1 +
εξ + ηξ)ξ. If φ = min

{
1
2 ,

τ2

4+τ2

}
, then we have

fl(t) = (1 + εt + ηt)t, fl(cs) = (1 + εcs + ηcs)cs, fl(sn) = (1 + εsn + ηsn)sn,

where

(i) |εt| ≤ (3 + φ) u+ |εξ| ≤ 7
2
u+ |εξ|, ηt = ηG ( ε4(ξ, εξ, ηξ), η4(ξ, εξ, ηξ) ),

(ii) |εcs| ≤
[
5
2

+
τ2

4 + 2τ2

(
7
2

+ φ

)]
u+

τ2

4 + 2τ2
|εξ| ≤ 9

2
u+

1
2
|εξ|,

ηcs = ηG ( ε3(t, εt, ηt), η3(t, εt, ηt) ),

(iii) |εsn| ≤
(

11
2

+ φ

)
u+ |εξ| ≤ 6u+ |εξ|, ηsn = η5(t, εt, ηt).

Here ε3, ε4, η3, η4, η5, and ηG are defined by Lemmas 2 and 3, respectively.
Proof. (i) Let ν = ν(ξ) = |ξ| +

√
1 + ξ2. Using Lemma 2(iv) with εx = εξ and

ηx = ηξ, we have fl(ν) = (1 + εν + ην)ν, where

εν = ε4(ξ, εξ, ηξ) = ε4 +
1

1 + z

(
ε3 +

ε2
2

)
+

z2

1 + z
· ε1

2
+ zεξ, z2 =

ξ2

1 + ξ2
,

ην = η4(ξ, εξ, ηξ).

Now we have

|εν | ≤ u+
1

1 + z
· 3
2
u+

z2

1 + z
· u
2

+ |zεξ| =
(

1 + z +
4

1 + z

)
u

2
+ |zεξ|.(4.1)

Since 0 ≤ z ≤ 1, the function f(z) = 1 + z + 4
1+z attains the maximum at z = 0

and f(0) = 5. Thus we obtain

|εν | ≤ 5
2
u+ |εξ| =

(
2 +

1
2

)
u+ |εξ|.(4.2)
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Since z2 = 1
1+1/ξ2 ≥ 1

1+τ2 , we have z ≥ 1√
1+τ2 ≥ 1

1+ τ2
2

= 2
2+τ2 and, consequently,

1
1+z ≤ 1

1+ 2
2+τ2

= 2+τ2

4+τ2 . Thus, from the inequality (4.1), we have

|εν | ≤
(

1 + 1 + 4 · 2 + τ2

4 + τ2

)
u

2
+ |εξ| =

(
2 +

τ2

4 + τ2

)
u+ |εξ|.(4.3)

Using now (4.2) and (4.3), since t = t(ξ) = 1/ν(ξ), the desired estimates for |εt| and
ηt are obtained by applying Lemma 3 with F (x) replaced by ν(ξ).

(ii) Let fl(ω) = (1 + εω + ηω)ω, where ω = ω(t) =
√

1 + t2. Using Lemma 2(iii)
with εx = εt and ηx = ηt, we obtain

εω = ε3(t, εt, ηt) = ε3 +
ε2
2

+ z2
(ε1

2
+ εt

)
, z2 =

t2

1 + t2
,(4.4)

ηω = η3(t, εt, ηt).

We first estimate z2 to be

z2 =
1

1 + 1
t2

=
1

1 +
(
|ξ|+

√
1 + ξ2

)2 ≤
1

1 +
(

1
τ +

√
1 + 1

τ2

)2

=
1

2 + 2
τ2 + 2

τ2

√
1 + τ2

=
τ2

2
(
1 + τ2 +

√
1 + τ2

) ≤ τ2

2 (1 + τ2 + 1)

=
τ2

4 + 2τ2
,(4.5)

which together with (4.4) and the assertion (i) yields

|εω| ≤ u+
u

2
+

τ2

4 + 2τ2

[u
2

+ (3 + φ) u+ |εξ|
]

=
[
3
2

+
τ2

4 + 2τ2

(
7
2

+ φ

)]
u+

τ2

4 + 2τ2
|εξ|

≤
[
3
2

+
2τ2

2 + τ2

]
u+

τ2

4 + 2τ2
|εξ| ≤ 7

2
u+

1
2
|εξ|.

Since cs = cs(t) = 1/ω(t), to obtain the estimates for |εcs| and ηcs, we apply Lemma
3 for ω(t).

(iii) We have sn = sn(t) = t/ω(t) = t/
√

1 + t2. Using Lemma 2(v) we obtain

εsn = ε5(t, εt, ηt) = ε5 − ε3 − ε2
2
− z2

2
ε1 +

1
1 + t2

εt, z2 =
t2

1 + t2
,

ηsn = η5(t, εt, ηt).

Using the assertion (i) we have

|εsn| ≤ u+ u+
u

2
+
u

2
· t2

1 + t2
+ |εt| · 1

1 + t2
≤ 5

2
u+ max

{u
2
, |εt|

}

≤ 5
2
u+ (3 + φ)u+ |εξ| =

(
11
2

+ φ

)
u+ |εξ| ≤ 6u+ |εξ|,

which completes the proof.
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We can see from Lemma 4 that the accumulation of the errors in t, cs, and sn
decreases when the rotation angle becomes small enough. Since εξ is the main (linear)
part of the error that is caused by the previous computations, the current computation
increases the error of t for at most 3u + O(τ2u), the error of cs for 2.5u + O(τ2u),
and the error of sn for 5.5u + O(τ2u). Note also that the initial error εξ appears in
εcs with a factor less than τ2/2.

For further analysis we shall now compute the general error bounds from Lemmas 4
and 2 by using the relation (3.1).

Lemma 5. If the inclusion (3.1) holds, then in Algorithm 1 we have

(i) fl(ξ) = (1 + εξ + ηξ)ξ, where
|εξ| ≤ 2u, |ηξ| ≤ u2 < 0.000 000 12 u,

(ii) fl(t) = (1 + εt + ηt)t, where
|εt| ≤ 5.5u, |ηt| < 43.750 046 7 u2 < 0.000 005 3 u,

(iii) fl(cs) = (1 + εcs + ηcs)cs, where
|εcs| ≤ 5.5 u, |ηcs| < 69.562 743 u2 < 0.000 008 3 u,

(iv) fl(sn) = (1 + εsn + ηsn)sn, where
|εsn| ≤ 8u, |ηsn| < 143.562 755 3 u2 < 0.000 017 2 u.

Proof. In this proof we shall use the assumption u ≤ 2−23 < 1.192 092 897 · 10−7

which is seen in (3.1).
(i) We have fl(ξ) = (1 + ε1)(1 + ε2) b−a2c = [1 + (ε1 + ε2) + ε1ε2] · ξ, and thus

εξ = ε1 + ε2, ηξ = ε1ε2, which yields the assertion.
(ii) The bound for |εt| is easily obtained using (i) and Lemma 4(i). To bound |ηt|,

we first use (i) and Lemma 2(i)–(iv) with y = (1 + εξ + ηξ)ξ. We obtain |ε1| ≤ 5u,
|η1| < 10.0000012u2; |ε2| ≤ 6u, |η2| < 15.0000024u2; |ε3| ≤ 4u, |η3| < 15.0000089u2;
|ε4| ≤ 4.5u, |η4| < 19.0000107u2. Then we apply Lemma 3 with εF = ε4, ηF = η4 and
we obtain the bound for |ηt| (ηt = ηG).

(iii) Similarly, (i) and Lemma 4(ii) yield the bound for |εcs|. To bound |ηcs|, we first
use (ii) and Lemma 2(i)–(iii) with y = (1 + εt + ηt)t. Note that here z2 = t2/(1 + t2),
and according to the inequality (4.5) we have z2 < τ2/(4 + 2τ2) < 1/2. We then
obtain |ε1| ≤ 12u, |η1| < 128.750165u2; |ε2| ≤ 7u, |η2| < 70.375091u2; |ε3| ≤ 4.5u,
|η3| < 44.8125673u2. Finally, |ηcs| is bounded by Lemma 3 with εF = ε3, ηF = η3,
and ηcs = ηG.

(iv) The assertion (i) and Lemma 4(iii) yield the bound for |εsn|. To obtain the
bound for |ηsn|, we use the bounds for |ε1|, . . . , |η3| from the proof of (iii) and then
apply Lemma 2(v).

We prove now the main accuracy result. It shows that [7, Theorem 3.1] can be
applied.

Theorem 6. Let H be a symmetric matrix of order n with nonzero diagonal
elements. Suppose that H ′ and fl(H ′) are obtained from H by applying one step
of Algorithm 1 with the pivot pair (i, j) in exact and finite arithmetic, respectively.
Suppose also that δH is such that fl(H ′) is obtained from H + δH by applying one
step of the algorithm in exact arithmetic. Let D = |diag(H)|1/2, A = D−1HD−1,
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δA = D−1δHD−1, and

αij =

√√√√√2
n∑
k=1
k �=i,j

a2
ik + 2

n∑
k=1
k �=i,j

a2
jk + 2a2

ij = ||Eijoff(A) + off(A)Eij − Eijoff(A)Eij ||F ,

where Eij = eie
T
i + eje

T
j . If αij < 1, then

||δA||F < (22.54αij + 2.51)u,

where u is one of the possible machine precisions in (3.1).
Proof. The idea of the proof is based on the proof of [2, Theorem 3.1] but includes

significant improvements. Let[
a c
c b

]
≡
[

sgn(hii)d2
i aijdidj

aijdidj sgn(hjj)d2
j

]
,

where di =
√|hii|, dj =

√|hjj |. Note that aij = hij/
√|hiihjj | is an element of the

scaled matrix A. According to our assumption we have

a2
ij ≤

α2
ij

2
<

1
2
.(4.6)

We consider first the part of Algorithm 1 that is indicated by “update the rest of rows
and columns i and j.” We have

fl(h′ik) = (1 + ε1)[(1 + ε2)(1 + εcs + ηcs) · cs · hik
− (1 + ε3)(1 + εsn + ηsn) · sn · hjk] = h′ik + δh′ik, k 
= i, j,

where

δh′ik = [(εcs + ηcs)(1 + ε1)(1 + ε2) + ε1 + ε2 + ε1ε2] · cs · hik
− [(εsn + ηsn)(1 + ε1)(1 + ε3) + ε1 + ε3 + ε1ε3] · sn · hjk.(4.7)

Thus we have

|δh′ik| ≤ μ1|cs| · |hik|+ μ2|sn| · |hjk|, k 
= i, j,(4.8)

where

μ1 = |εcs + ηcs|(1 + u)2 + 2u+ u2, μ2 = |εsn + ηsn|(1 + u)2 + 2u+ u2.(4.9)

Similarly, we obtain fl(h′jk) = h′jk + δh′jk, k 
= i, j, where

|δh′jk| ≤ μ1|cs| · |hjk|+ μ2|sn| · |hik|, k 
= i, j.(4.10)

To obtain the backward error, we write[
fl(h′ik)
fl(h′jk)

]
= ŨT

[
hik
hjk

]
+
[
δh′ik
δh′jk

]
= ŨT

([
hik
hjk

]
+ Ũ

[
δh′ik
δh′jk

])

= ŨT
([

hik
hjk

]
+
[
δhik
δhjk

])
,
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where δhik = cs · δh′ik + sn · δh′jk, δhjk = cs · δh′jk − sn · δh′ik, and Ũ is defined by
(2.1). This together with the relations (4.8) and (4.10) yields

|δaik| = |δhik|
didk

≤ μ1 cs
2|aik|+ μ2 |cs| |sn| |ajk| dj

di
+ μ1 |sn| |cs| |ajk| dj

di
+ μ2 sn

2|aik|,

|δajk| = |δhjk|
djdk

≤ μ1 cs
2|ajk|+ μ2 |cs| |sn| |aik| di

dj
+ μ1 |sn| |cs| |aik| di

dj
+ μ2 sn

2|ajk|.

Let q = dj/di ≤ 1, else we set q = di/dj . Using the Cauchy–Schwarz inequality, we
have

(δaik)2 ≤
[
(μ1 cs

2 + μ2 sn
2)|aik|+ (μ1 + μ2)|cs| |sn| |ajk| q

]2
≤ [(μ1 cs

2 + μ2 sn
2)2 + (μ1 + μ2)2cs2sn2q2

] · (a2
ik + a2

jk)

≤
[
μ2 + (μ1 + μ2)2 · 14 sin2 2ϕ · q2

]
· (a2

ik + a2
jk),(4.11)

where ϕ is the rotation angle (tan 2ϕ = 2c/(b− a) ) and μ = max{μ1, μ2}. Similarly,
we obtain

(δajk)2 ≤
[
μ2 + (μ1 + μ2)2 · 14 sin2 2ϕ · 1

q2

]
· (a2

ik + a2
jk).(4.12)

We now have

|ξ| =
∣∣∣∣b− a2c

∣∣∣∣ =
∣∣∣∣∣
sgn(hjj)d2

j − sgn(hii)d2
i

2aijdidj

∣∣∣∣∣ ≥
∣∣∣∣∣
d2
j − d2

i

2aijdidj

∣∣∣∣∣ = 1− q2
2|aij |q(4.13)

and

1
4

sin2 2ϕ ≤ 1
4

tan2 2ϕ =
1

4ξ2
≤ a2

ijq
2

(1 − q2)2 .

Since q ≤ 1, we have 1
4 sin2 2ϕ · q2 ≤ 1

4 · 1 · 1 = 0.25 and

1
4

sin2 2ϕ · 1
q2
≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2
ij

(1− q2)2 <
1

2(1− q2)2 < 0.933013 for q ≤
√

6−√2
2

,

1
4q2

< 0.933013 for
√

6−√2
2

≤ q ≤ 1.

Here we have used the assumption (4.6). Thus, we have obtained

1
4

sin2 2ϕ · q2 ≤ 0.25,
1
4

sin2 2ϕ · 1
q2
≤ 0.933 013.(4.14)

If we apply these bounds in the inequalities (4.11) and (4.12), then we obtain

(δaik)2 + (δajk)2 <
[
2μ2 + 1.183013(μ1 + μ2)2

] · (a2
ik + a2

jk), k 
= i, j.(4.15)

Note that the same inequality holds for (δaki)2 + (δakj)2. We proceed now by consid-
ering the part of Algorithm 1 that is indicated by “update the 2× 2 submatrix.” We
have

fl(h′ii) = (1 + ε4)[a− (1 + ε5)(1 + εt + ηt) · c · t]
= (1 + ε4)[hii − (1 + ε5)(1 + εt + ηt) · hijt] = h′ii + δh′ii,
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where δh′ii = ε4hii − [(εt + ηt)(1 + ε4)(1 + ε5) + ε4 + ε5 + ε4ε5] · hijt .
In the same way, we obtain fl(h′jj) = h′jj + δh′jj , where

δh′jj = ε6hjj + [(εt + ηt)(1 + ε6)(1 + ε7) + ε6 + ε7 + ε6ε7] · hijt.
Thus we have

|δh′ii| ≤ |hii|u+ μ3|hij | · t, |δh′jj | ≤ |hjj |u+ μ3|hij | · t,(4.16)

where

μ3 = |εt + ηt|(1 + u)2 + 2u+ u2.(4.17)

To obtain the backward error, we have

ŨT
([

hii hij
hij hjj

]
+
[
δhii δhij
δhij δhjj

])
Ũ =

[
h′ii 0
0 h′jj

]
+
[
δh′ii 0
0 δh′jj

]

and thus[
δhii δhij
δhij δhjj

]
= Ũ

[
δh′ii 0
0 δh′jj

]
ŨT

=
[
cs2 · δh′ii + sn2 · δh′jj sn · cs · (δh′jj − δh′ii)
sn · cs · (δh′jj − δh′ii) cs2 · δh′jj + sn2 · δh′ii

]
.

Using now the inequality (4.16), we obtain

|δaii| = |δhii|
d2
i

≤ cs2
(
u+ μ3|t| · |aij | dj

di

)
+ sn2

(
d2
j

d2
i

u+ μ3|t| · |aij | dj
di

)

= (cs2 + sn2 · q2)u+ μ3|aij | · |t|q,(4.18)

|δajj | = |δhjj |
d2
j

≤ cs2
(
u+ μ3|t| · |aij | di

dj

)
+ sn2

(
d2
i

d2
j

u+ μ3|t| · |aij | di
dj

)

=
(
cs2 + sn2 · 1

q2

)
u+ μ3|aij | · |t|1

q
,(4.19)

|δaij | = |δhij |
didj

≤ |cs · sn|
(
di
dj
u+ μ3|t| · |aij |+ dj

di
u+ μ3|t| · |aij |

)

= |cs| · |sn|
(
q +

1
q

)
u+ 2μ3 · sn2|aij |.(4.20)

Note that the change q → 1/q interchange the bounds for |δaii| and |δajj |. We shall
now estimate the terms in the relations (4.18)–(4.20). First, from (4.13), we deduce

|sn| ≤ |t| ≤ 1
2
| tan 2ϕ| = 1

2|ξ| ≤
|aij |q
1− q2 ,(4.21)

and thus

|sn| 1
q
≤ |t| 1

q
≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|aij |
1− q2 ≤

√
2

2(1− q2) ≤
√

2 for q ≤
√

2
2
,

1
q
≤ √2 for

√
2

2
≤ q ≤ 1.

(4.22)
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Now we have

cs2 + sn2q2 ≤ cs2 + sn2 = 1,

cs2 + sn2 · 1
q2

= 1− sn2 + sn2 · 1
q2

= 1 + sn2 · 1− q
2

q2

≤ 1 + |sn| 1
q
· |aij | ≤ 1 +

√
2 · |aij | ,

|cs| · |sn|
(
q +

1
q

)
=

1
2
| sin 2ϕ| q +

1
2
| sin 2ϕ| · 1

q
≤ 0.5 +

√
0.933 013 < 1.465 926,

where we have used the inequalities (4.21) and (4.14). Note also that |t|q ≤ 1 and
sn2 ≤ 0.5 because ϕ ∈ [−π/4, π/4]. If we apply these bounds in the relations (4.18)–
(4.20), then we obtain

|δaii| ≤ u+ μ3|aij |, |δajj | ≤ u+
√

2(μ3 + u)|aij |,
|δaij | ≤ 1.465 926 u+ μ3|aij |.

(4.23)

The obtained expressions (4.15) and (4.23) are the estimates for the elements of the
matrix δA. Note that the only nonzero elements of δA are those in ith, jth row, and
column. If we want to compute the upper bound for the norm of δA, then we need
to estimate μ1, μ2, μ, and μ3. The computation will be performed to, at least, six
significant digits. Using the relation (4.9) together with Lemma 5(iii), (iv) and then
the relation (4.17) together with Lemma 5(ii), we obtain

μ1 < 7.500 009 74 u, μ2 < 10.000 019 24 u, μ3 < 7.500 006 74 u.(4.24)

The bound for μ2 is also the bound for μ = max{μ1, μ2}. We apply these bounds in
(4.23):

(δaii)2 + (δajj)2 + 2(δaij)2

≤ 6.297 878 076 u2 + (10.692 131 13μ3 + 2
√

2 u) |aij |u+ [3μ2
3 + 2(μ3 + u)2] a2

ij

≤ [6.297 878 076+ 83.019 482 67 |aij|+ 313.250 532 6 a2
ij

]
u2,

and then in (4.15):

(δaik)2 + (δajk)2 ≤ 562.299 700 9 (a2
ik + a2

jk)u
2, k 
= i, j.(4.25)

Note again that the same inequality holds for (δaki)2 + (δakj)2.
Since

∑n
k=1
k �=i,j

(2a2
ik + 2a2

jk) = α2
ij − 2a2

ij , |aij | ≤ αij/
√

2 and α2
ij ≤ αij , we have

||δA||2F = 2
n∑
k=1
k �=i,j

[
(δaik)2 + (δajk)2

]
+ (δaii)2 + (δajj)2 + 2(δaij)2

≤
[

562.299 700 9
n∑
k=1
k �=i,j

(2a2
ik + 2a2

jk)

+ 6.297 878 076+ 83.019 482 67 |aij|+ 313.250 532 6 a2
ij

]
u2
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≤ [ 562.299 700 9α2
ij + 83.019 482 67|aij|+ 6.297 878 076 ]u2

≤ [507.890 439 6α2
ij + 54.409 261 29α2

ij + 58.703 639 2αij + 6.297 878 076 ]u2

≤ [507.890 439 6α2
ij + 113.112 900 5αij + 6.297 878 076 ]u2

= [22.536 424 73αij + 2.509 557 347]2 · u2,

which completes the proof.
We can see that Theorem 6 gives a much sharper bound for ||δA||F than [2, The-

orem 3.1] that of positive definite matrices. The assumption of Theorem 6 naturally
holds for the important class of α-s.d.d. matrices because αij ≤ ||off(A)||F = α < 1.
But the question is, If the initial matrix H is α-s.d.d., does the sequence of matri-
ces, which is generated by the Jacobi method, retain this property? The affirmative
answer to this question for positive definite matrices is given in [4, Lemma 3] and [5,
Lemma 3]. It is also true for indefinite matrices (see Lemma 8 in section 4.3).

4.2. The estimates for one sweep. The most common pivot strategies which
are used in the Jacobi method are the row- and the column-cyclic1 strategy. We shall
consider now an equivalent parallel strategy which was first proposed in [9]. Each
cycle of this strategy consists of 2n− 3 batches of the Jacobi transformations (which
are indicated by arrows in Figure 4.1) where all of the transformations in a batch can
be performed simultaneously. Since the Jacobi transformation is determined by a pair
of pivot indices, each batch will be identified by a set of pivot pairs. Thus we have

cycle = {B1, B2, . . . ,B2n−4, B2n−3},(4.26)

where

Bl = {(1, l+ 1), (2, l), (3, l− 1), . . . , (k, k + 1)} for 1 ≤ l = 2k − 1 ≤ n− 1,
Bl = {(1, l+ 1), (2, l), (3, l− 1), . . . , (k, k + 2)} for 2 ≤ l = 2k ≤ n− 1,
Bl = {(l′, n), (l′ + 1, n− 1), (l′ + 2, n− 2), . . . , (k, k + 1)}(4.27)

for n ≤ l = 2k − 1 ≤ 2n− 3, l′ = l − n+ 2,
Bl = {(l′, n), (l′ + 1, n− 1), (l′ + 2, n− 2), . . . , (k, k + 2)}

for n ≤ l = 2k ≤ 2n− 3, l′ = l − n+ 2.

For example we have

B1 = {(1, 2)}, B2 = {(1, 3)}, B3 = {(1, 4), (2, 3)},
B4 = {(1, 5), (2, 4)}, B5 = {(1, 6), (2, 5), (3, 4)},
B6 = {(1, 7), (2, 6), (3, 5)}, B7 = {(1, 8), (2, 7), (3, 6), (4, 5)},
. . . . . . . . .
B2n−7 = {(n− 5, n), (n− 4, n− 1), (n− 3, n− 2)},
B2n−6 = {(n− 4, n), (n− 3, n− 1)}, B2n−5 = {(n− 3, n), (n− 2, n− 1)},
B2n−4 = {(n− 2, n)}, B2n−3 = {(n− 1, n)}.

Let us consider now the accuracy result for an arbitrarily chosen batch B ∈ cycle.
We consider the element at arbitrary position (i, r), i < r before and after the batch
B is performed. If (i, r) ∈ B, then it is the pivot element and it changes only once (it

1The details about cyclic pivot strategies are given in [4].
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Fig. 4.1. Parallel pivot strategy (Sameh).

is annihilated). If (i, r) 
∈ B, then it may not change or it may change once or twice.
Indeed, if there is no pivot pair in B which belongs to the ith row or rth column, then
this element does not change. If there is only one pivot pair in B corresponding to the
ith row or rth column, then the element changes once. This case was considered in
Theorem 6. If there are two pivot pairs in B, one corresponding to the ith row, and
one to the rth column, then it changes twice. Thus, it remains to consider this last
case.

Suppose that B contains two pivot pairs (i, j), i < j and (l, r), l < r (see Figure
4.2). Let H be the matrix iterate at the stage just before applying the batch B. Since
all of the pairs from B are disjoint (as sets), it is irrelevant in which order the Jacobi
transformations, defined by the pairs from B, are applied. We can assume that the
rotation with pivot pair (i, j) is applied as first and with the pair (l, r) as second. So,
let

H
(i,j)−→ H ′ (l,r)−→ H ′′, H ′ = UTHU, H ′′ = (U ′ )TH ′U ′.

Using the transformation formulas from Algorithm 1, we have

h′ik = chik − shjk = h′ki, h′jk = chjk + shik = h′kj , k 
= i, j;

h′′kl = c′h′kl − s′h′kr = h′′lk, h′′kr = c′h′kr + s′h′kl = h′′rk, k 
= l, r,
(4.28)

where c = cs, s = sn and c′ = cs′, s′ = sn′ are the sine and the cosine of the
rotation angle in the first and second transformation, respectively. Thus, after these
two transformations, the elements h′′il, h

′′
jl, h

′′
ir, and h′′jr are some linear combination

of hil, hjl, hir, and hjr (see again Figure 4.2). As performed earlier, we set fl(h′pq) =
h′pq + δh′pq and fl(h′′pq) = h′′pq + δh′′pq. Using the notation from Lemma 5, we have

fl(h′′il) = (1 + ε1) [(1 + ε2)(1 + εc′ + ηc′) · c′ · (h′il + δh′il)

− (1 + ε3)(1 + εs′ + ηs′ ) · s′ · (h′ir + δh′ir)] = c′h′il − s′h′ir + δh′′il,
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Fig. 4.2. Two subsequent transformations.

where

δh′′il = [(εc′ + ηc′)(1 + ε1)(1 + ε2) + ε1 + ε2 + ε1ε2] · c′ · h′il
− [(εs′ + ηs′ )(1 + ε1)(1 + ε3) + ε1 + ε3 + ε1ε3] · s′ · h′ir
+ (1 + ε1)(1 + ε2)(1 + εc′ + ηc′) · c′ · δh′il
− (1 + ε1)(1 + ε3)(1 + εs′ + ηs′ ) · s′ · δh′ir.

Using the relations (4.7)–(4.10), we obtain

|δh′′il| ≤ μ1|c′| · |h′il|+ μ2|s′| · |h′ir|+ (1 + μ1)|c′| · |δh′il|+ (1 + μ2)|s′| · |δh′ir|.(4.29)

We obtain similar expressions for δh′′ir, δh
′′
jl, and δh′′jr. For δh′′ir we just replace il → ir

and ir → il in (4.29). For δh′′jl we change il → jl and ir → jr. For δh′′jr we change
il→ jr and ir→ jl.
To obtain the backward error, we write[

fl(h′′il) fl(h′′ir)
fl(h′′jl) fl(h′′jr)

]
= ŨT

[
hil hir
hjl hjr

]
Ũ ′ +

[
δh′′il δh′′ir
δh′′jl δh′′jr

]

= ŨT
([

hil hir
hjl hjr

]
+
[

Δhil Δhir
Δhjl Δhjr

])
Ũ ′,

which yields[
Δhil Δhir
Δhjl Δhjr

]
= Ũ

[
δh′′il δh′′ir
δh′′jl δh′′jr

] (
Ũ ′
)T

=
[

c s
−s c

] [
δh′′il δh′′ir
δh′′jl δh′′jr

] [
c′ −s′
s′ c′

]
.(4.30)

Similarly, as in Theorem 6 we need to estimate the backward errors for scaled elements
which requires a lot of elementary computations. We shall illustrate it for the element
ail = hil/(didl), where di =

√|hii|, dl =
√|hll|.
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Using (4.30), we have Δhil = cc′δh′′il + sc′δh′′jl + cs′δh′′ir + ss′δh′′jr , which together
with the relations (4.29), (4.28), (4.8), and (4.10), yields

|Δail| ≤ 1
didl

(|cc′| ·Θiljr + |sc′| ·Θjlir + |cs′| ·Θirjl + |ss′| ·Θjril) ,(4.31)

where

Θiljr = μ1|c′| · (|chil|+ |shjl|) + μ2|s′| · (|chir|+ |shjr|)(4.32)

+ (1 + μ1)|c′| · (μ1|chil|+ μ2|shjl|) + (1 + μ2)|s′| · (μ1|chir|+ μ2|shjr |).
The expression for Θjlir is obtained by replacing indices, indicated by the transition
(i, l, j, r) → (j, l, i, r) and similarly for Θirjl and Θjril. In the inequality (4.31) the
following terms appear:

shjl
didl

= s
dj
di
ajl,

s′hir
didl

= s′
dr
dl
air, and

ss′hjr
didl

= s
dj
di
· s′ dr

dl
· ajr .

Thus we need to estimate |sdj/di| and |s′dr/dl|. Similarly, in the expressions for |Δair |,
|Δajl|, and |Δajr| we additionally need to estimate |sdi/dj | and |s′dl/dr|. Let

q = min
{
dj
di
,
di
dj

}
, q′ = min

{
dl
dr
,
dr
dl

}
.

Since the rotation angles belong to [−π/4, π/4], we have |s| ≤ √2/2 and |s′| ≤ √2/2.
Using the inequalities (4.22), we obtain

|s| 1
q
≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

2(1− q2) ≤
√

2(
√

5 + 1)
4

= τ for 0 ≤ q ≤
√

5− 1
2

,

√
2

2
· 1
q
≤ τ for

√
5− 1
2

≤ q ≤ 1.

This estimate holds also for |s′| · (1/q′). Thus we have obtained∣∣∣∣s djdi
∣∣∣∣ ≤ |s| · 1q ≤ τ,

∣∣∣∣s′ drdl
∣∣∣∣ ≤ |s′| · 1

q′
≤ τ < 1.144 122 807,(4.33)

and the same for |sdi/dj | and |s′dl/dr|. If we insert the bounds (4.33) in (4.31), then
by using (4.32) we obtain

|Δail| ≤ μ1|ail|+ μ1τ |ajl|+ μ2τ |air |+ μ2τ
2|ajr |+ (1 + μ1)μ1|ail|

+ (1 + μ1)μ2τ |ajl|+ (1 + μ2)μ1τ |air |+ (1 + μ2)μ2τ
2|ajr|

+ μ1τ |ajl|+ μ1

2
|ail|+ μ2τ

2|ajr |+ τ

2
μ2|air|+ (1 + μ1)μ1τ |ajl|

+
1
2
(1 + μ1)μ2|ail|+ (1 + μ2)μ1τ

2|ajr |+ τ

2
(1 + μ2)μ2|air|

+ μ1τ |air |+ μ1τ
2|ajr |+ μ2

2
|ail|+ τ

2
μ2|ajl|+ (1 + μ1)μ1τ |air |

+ (1 + μ1)μ2τ
2|ajr|+ 1

2
(1 + μ2)μ1|ail|+ τ

2
(1 + μ2)μ2|ajl|

+ μ1τ
2|ajr|+ τ

2
μ1|air|+ τ

2
μ2|ajl|+ 1

4
μ2|ail|+ (1 + μ1)μ1τ

2|ajr |

+
τ

2
(1 + μ1)μ2|air|+ τ

2
(1 + μ2)μ1|ajl|+ 1

4
(1 + μ2)μ2|ail|.
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Here each of the terms Θiljr , Θjlir , Θirjl, and Θjril from the relation (4.31) are
estimated by two rows in the above relation in the same order. Thus, we have obtained

|Δail| ≤ ν1|ail|+ ν2|ajl|+ ν2|air|+ ν3|ajr |,(4.34)

and similarly,

|Δajl| ≤ ν1|ajl|+ ν2|ail|+ ν2|ajr|+ ν3|air|,
|Δair | ≤ ν1|air|+ ν2|ajr|+ ν2|ail|+ ν3|ajl|,(4.35)
|Δajr | ≤ ν1|ajr|+ ν2|air|+ ν2|ajl|+ ν3|ail|,

where

ν1 = 3μ1 + 1.5μ2 + μ2
1 + μ1μ2 + 0.25μ2

2,

ν2 = (3.5μ1 + 2.5μ2 + μ2
1 + 1.5μ1μ2 + 0.5μ2

2 ) τ,(4.36)
ν3 = (4μ1 + 4μ2 + μ2

1 + 2μ1μ2 + μ2
2 ) τ2.

If we use the inequalities (4.24) and u ≤ 2−23 in the equations (4.36), we obtain

ν1 < 37.500 076 72 u, ν2 < 58.636 417 67 u, ν3 < 91.631 389 15 u.(4.37)

Finally, using (4.37) in the relations (4.34) and (4.35), we obtain

|Δail|2 + |Δajl|2 + |Δair|2 + |Δajr|2
≤ 4(ν2

1 + 2ν2
2 + ν2

3 )
(|ail|2 + |ajl|2 + |air|2 + |ajr|2

)
≤ 66 716.1048 u2

(|ail|2 + |ajl|2 + |air|2 + |ajr|2
)
.(4.38)

We can now prove the accuracy result for an arbitrarily chosen batch of Jacobi rota-
tions.

Theorem 7. Let H be a symmetric matrix of order n with nonzero diagonal
elements. Let B ∈ cycle be defined by the relations (4.26) and (4.27). Suppose that
Ĥ and fl(Ĥ) are obtained from H by applying the batch B of Jacobi transformations,
which are given by Algorithm 1, in exact and finite arithmetic, respectively. Suppose
also that ΔH is such that fl(Ĥ) is obtained from H + ΔH by applying the batch B in
exact arithmetic. Let D = |diag(H)|1/2, A = D−1HD−1, ΔA = D−1ΔHD−1, and
let

α = ||off(A)||F =

√√√√√
n∑

k,l=1
k �=l

a2
kl.

If α < 1, then

||ΔA||2 < (258.67α+ 2.47)u,

where u is one of the possible machine precisions in (3.1).
Proof. We consider first the error in an arbitrarily chosen off-diagonal element air,

i < r. If (i, r) ∈ B, then air is the pivot element and the inequalities (4.23) and (4.24)
yield

|Δair | = |δair | ≤ 1.465 926 u+ 7.500 006 74|air|u.(4.39)
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If there exists j such that (i, j) ∈ B and (k, r) 
∈ B for all 1 ≤ k ≤ n, then air is
changed together with ajr once and the inequality (4.25) holds. This gives

(Δair)2 + (Δajr)2 ≤ 562.299 700 9 (a2
ir + a2

jr)u
2.(4.40)

A similar situation appears if there exists l such that (l, r) ∈ B and (i, k) 
∈ B for all
1 ≤ k ≤ n. If there exist j and l such that (i, j), (l, r) ∈ B, then air together with ail,
ajl, and ajr are changed twice, so the relation (4.38) holds. Note that the bound from
(4.38) is larger than the one from (4.40), and we can use it in both cases.

Now, we consider the diagonal element aii. If (i, k), (k, i) 
∈ B for all 1 ≤ k ≤ n,
then aii does not change. If there exists j such that (i, j) ∈ B, then (4.23) and (4.24)
yield

|Δaii| = |δaii| ≤ u+ 7.500 006 74 |aij|u,
|Δajj | = |δajj | ≤ u+ 12.020 824 82 |aij|u.

(4.41)

We obtain a similar conclusion, with i and j interchanged, if (j, i) ∈ B.
Now, we construct ΔA of three parts, ΔA = ΔD + ΔP + ΔO, where
• ΔD is a diagonal matrix which contains only the errors of diagonal elements

which are estimated by the inequalities (4.41).
• ΔP contains the errors of pivot elements from B and their transposes accord-

ing to (4.39). Thus, ΔP is symmetric and zero at positions other than those
defined in B.
• ΔO contains the errors of elements air , where i 
= r and neither (i, r) nor

(r, i) belongs to B. They are estimated by the inequalities (4.40) and (4.38).
Now, if we set x = max(i,j)∈B |aij |, then we have

||ΔA||2 ≤ ||ΔD||2 + ||ΔP ||2 + ||ΔO||F
≤ u+ 12.020 824 82 xu+ 1.465 926 u+ 7.500 006 74 xu

+ u ·
√

66716.1048 ·
√
α2 − 2

∑
(i,j)∈B

a2
ij

≤ 2.465 926 u+ 19.520 831 6 xu+ 258.294 608 6 u ·
√
α2 − 2x2

≤ 2.465 926 u+ 258.294 608 6 u ·
(
0.075 575 84 x+

√
α2 − 2x2

)
.

Let us consider for the moment the function f(x) = μx+
√
α2 − 2x2, 0 ≤ x ≤ α/√2,

where μ ∈ 〈0, 1〉. It attains the maximum at the point x∗ = μα/
√

4 + 2μ2 and f(x∗) =
α
√

1 + μ2/2. Thus we have

||ΔA||2 ≤ 2.465 926 u+ 258.294 608 6 u · α ·
√

1 +
1
2
· 0.075 575 842

≤ 2.465 926 u+ 258.663 172 uα,

which completes the proof.
Let us make some observations. In the proof of Theorem 7 we have used the

inequality (4.38). This means that we have assumed that all off-diagonal elements
(except the rotated ones) undergo two changes. This is almost true for the batches
with about n/2 elements (pivot pairs). For example, if n is even, then such batches
are Bn−1 with n/2 elements, Bn−2 and Bn with n/2−1 elements, Bn−3 and Bn+1 with
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n/2−2 elements etc. In these cases the bound of Theorem 7 is realistic. If the number
of elements of a batch is much smaller than n/2, then the bound is too large. The
reason lies in the fact that for such batches most of the matrix elements change only
once and for them the sharper bound (4.40) can be applied. Moreover, some parts
of the matrix do not change. For example, the batches B1, B2, B2n−4, and B2n−3

have only one pivot pair and Theorem 6 holds. For B3, B4, B2n−6, and B2n−5 only
four elements in the upper triangle change twice. For B5, B6, B2n−8, and B2n−7 there
are 12 such elements etc. It means that for certain batches the constant 258.67 from
Theorem 7 can be improved.

4.3. Accuracy of the computed eigenvalues. We consider now one sweep of
the Jacobi method under the column-cyclic strategy or under the equivalent parallel
pivot strategy which is given by the relations (4.26)–(4.27) and Figure 4.1. If we apply
the method to the initial matrix H of order n, then such a sweep contains N = n(n−
1)/2 Jacobi steps, which are given by Algorithm 1. Thus, the Jacobi method generates
the sequence of matrices H(0) = H,H(1), H(2), . . . , H(N). Let αk = ‖off(A(k))‖F be
the scaled off-norm, where A(k) = |diag(H(k))|−1/2H(k)|diag(H(k))|−1/2, k ≥ 0. It
may happen that αk > α0 for some k. But, if α0 is small enough, then this growth is
not significant and α-s.d.d. property is retained within the whole cycle. This follows
from the following lemma

Lemma 8 (see [6, Lemma 3]). If α0 ≤ 1/(10n), then α2
k ≤ ckα

2
0, 0 ≤ k ≤ N ,

where ck = (1 + 0.00126
n2 )k < 1.0007.

The bound 1/(10n) has been chosen in [6] as the assumption for the quadratic
convergence considerations and Lemma 8 is just an auxiliary result. The bound could
have been chosen much larger, but that would result in a larger bound for ck (see
also [4, Lemma 3]). Although αk may increase during the Jacobi process, we have the
quadratic reduction at the end of the cycle provided that α0 is small enough.

Theorem 9 (see [6, Theorem 6]). Let H be a complex or real Hermitian matrix
of order n ≥ 3. If the diagonal elements which are affiliated with the same multiple
eigenvalue occupy successive positions on the diagonal and

if α0 ≤ 1
10

min
{

1
n
, γ

}
, then αN ≤ 2.8

α2
0

γ
,

where

γ = min
λ,μ∈spectrum(H)

λ�=μ

|λ− μ|
|λ|+ |μ| .(4.42)

We estimate the errors in the computed eigenvalues, which are caused by floating
point arithmetic, by using the following perturbation result.

Theorem 10 (see [7, Theorem 3.1]). Let H and δH be Hermitian matrices of
order n, and let λ1 ≥ λ2 ≥ · · · ≥ λn and λ′1 ≥ λ′2 ≥ · · · ≥ λ′n be the eigenvalues
of H and H + δH, respectively. Let D = | diag(H)|1/2 be nonsingular, and let A =
D−1HD−1, δA = D−1δHD−1. Let α, η be real numbers such that ‖off(A)‖ ≤ α and
‖δA‖ ≤ η.

If η + 2α < 1 , then
∣∣∣∣λ

′
i

λi
− 1
∣∣∣∣ ≤ η

1−
(
1 + η

1−2α

)
α
≤ η

1− 2α
, 1 ≤ i ≤ n .

Using now Lemma 8 and Theorem 10 together with Theorems 6 and 7, we have
the following conclusions.
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Corollary 11. Suppose that, in Theorem 10, δH is the backward error which
is caused by applying to H one step, one batch, or one sweep of the Jacobi method in
finite arithmetic. Then we have

(i) η = (22.54α+ 2.51)u, α = α0 for one step,
(ii) η = (258.67α+ 2.47)u, α = α0 for one batch,
(iii) η = (2n− 3) (258.67α+ 2.47)u, α = max

0≤k≤N
αk for one sweep.

If, in addition, α0 ≤ 1/(10n), then α ≤ 1.00035α0.

For example, if α0 ≤ 10−2 (α0 ≤ 10−3), then the relative error in the computed
eigenvalues after we have applied the Jacobi method is bounded above by 2.8u (2.6u)
for one step, 5.1u (2.8u) for one batch, and 10.2nu (5.5nu) for one sweep.

Remark 12. As has been suggested by Rutishauser [8], the diagonal elements can
be updated just once in each cycle. To do that, a vector z with n components is used.
At the beginning of each cycle it is set to zero, z = 0. Within a cycle all contributions
to the diagonal elements are accumulated in z. If the current value of the diagonal
element h((r−1)N+k)

ii , 0 ≤ k ≤ N − 1, N = n(n − 1)/2 is needed to compute the
rotation matrix, then one can use the value of h((r−1)N)

ii + zi. At the end of cycle r
the diagonal elements are updated h

(rN)
ii = h

((r−1)N)
ii + zi, 1 ≤ i ≤ n, and z is set to

zero. If we write h′ii for h(rN)
ii and hii for h((r−1)N)

ii , then at the end of cycle r, we
have h′ii = hii + zi. If fl(zi) = (1 + εzi)zi, then

fl(h′ii) = (1 + ε)[hii + (1 + εzi)zi] = (1 + εi)h′ii, εi = ε+ (1 + ε) · zi
hii + zi

εzi .

If α is small enough, then |zi| � |hii| and thus εzi (which can be as large as nu)
is suppressed by the factor zi/(hii + zi). Therefore, after one cycle, the constant
(2n− 3) · 2.47u implied by Corollary 11(iii) becomes insignificant.

Usually, the quadratic convergence begins when α ≤ γ, where γ is defined by
(4.42) (see [4], [5], and Theorem 9). Due to the quadratic reduction of α (see [5] and
Theorem 9), the process is terminated after several cycles. Now Corollary 11 and
Remark 12 claim that the inaccuracy in the computed eigenvalues, coming from these
last few cycles, will hardly be several ulps (units in the last place).

4.4. The stopping criterion. The known stopping strategy for positive definite
matrices from [2] (which is actually implied by Rutishauser’s stopping criterion from
[8]) reads: if |aij | ≤ u, then set hij = 0. After all off-diagonal elements become zero,
the process is terminated. Using Theorem 6, we can slightly modify the stopping
criterion for indefinite matrices.

If we apply the rotation with pivot pair (i, j), which is given by Algorithm 1, then
the backward error is estimated by Theorem 6. If we do not apply the rotation, but
we set the pivot element to zero, then we produce the perturbation matrix δH for
which the scaled matrix δA has only two nonzero elements, (δA)ij = (δA)ji = −aij
and we have ||δA||F =

√
2|aij |. If the error thus produced is less than the error which

is caused by the rotation, then the rotation need not be performed. Thus, we suggest
the stopping strategy

if
√

2|aij | ≤ (22.54αij + 2.51)u, then set hij = 0,(4.43)

where αij is defined in the statement of Theorem 6. However, the computation of αij
requires about 4n operations. So, we shall simplify (4.43). Since αij ≥

√
2|aij |, the
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inequality in (4.43) holds provided that
√

2|aij | ≤ (22.54
√

2|aij |+ 2.51)u, or

|aij | ≤ 2.51u√
2− 22.54

√
2u
≤ 1.774 843 u .

Here we have used u ≤ 2−23. We can replace the bound 1.774 843 u by 2 u since αij
will generally be much larger than

√
2|aij |. Thus, instead of (4.43), we suggest the

following simple stopping strategy for the indefinite Jacobi method:

if |aij | ≤ 2 u, then set hij = 0,(4.44)

and terminate the process after all off-diagonal elements become zero.
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[11] K. Veselić, A Jacobi eigenreduction algorithm for definite matrix pairs, Numer. Math., 64
(1993), pp. 241–269.
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A QUASI-SEPARABLE APPROACH TO SOLVE THE SYMMETRIC
DEFINITE TRIDIAGONAL GENERALIZED EIGENVALUE

PROBLEM∗

RAF VANDEBRIL† , GENE GOLUB‡ , AND MARC VAN BAREL†

Abstract. We present a new fast algorithm for solving the generalized eigenvalue problem
Tx = λSx, in which both T and S are real symmetric tridiagonal matrices and S is positive definite.
A method for solving this problem is to compute a Cholesky factorization S = LLT and solve
the equivalent symmetric standard eigenvalue problem L−1TL−T (LT x) = λ(LT x). We prove that
the matrix L−1TL−T is quasi-separable; that is, all submatrices taken out of its strictly lower
triangular part have rank at most 1. We show how to efficiently compute the O(n) parameters
defining L−1TL−T and review eigensolvers for quasi-separable matrices. Our approach shows that
by fully exploiting the structure, the eigenvalues of Tx = λSx can be computed in O(n2) operations,
as opposed to the O(n3) operations for standard methods such as the so-called Cholesky-QR method.
It will be shown that the computation of the representation of this quasi-separable matrix is only
linear in time, and numerical experiments will illustrate the effectiveness of the presented approach.

Key words. generalized eigenvalue problem, quasi-separable, tridiagonal matrices
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1. Introduction. In this paper we consider generalized eigenvalue problems of
the form

Tx = λSx,

where both T and S are symmetric tridiagonal matrices and S is positive definite.
This problem arises in several applications such as the numerical solution of the radial
Schrödinger and Sturm–Liouville equations and in vibrational analysis [4, 47]. More
references to applications can be found in [38].

A method for solving this problem is the reduction to a standard eigenvalue
problem in the following sense:

L−1TL−T (LTx) = λ(LT x),

where S = LLT is the Cholesky decomposition of the matrix S (see [33, 44]). This
approach is considered less attractive since the generated matrix L−1TL−T is dense.
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This leads hence to an O(n3) method for computing the eigenvalues. Moreover, the
accuracy of this method also depends on the condition number of S, as the inverse of
its Cholesky factors is required. In [12] a detailed error analysis of the Cholesky-QR
method is presented, providing error bounds potentially much smaller than κ2(S)u,
in which u is the unit round-off. Moreover, [12] suggests using for the symmetric
definite generalized eigenvalue problem the Cholesky-QR method in which complete
pivoting is used to compute the Cholesky factorization. In this paper we opt to use the
Cholesky decomposition, but unfortunately we cannot use pivoting since this would
destroy the structure and increase the computational complexity of the method.

Also other different techniques exist, working directly on the Tx = λSx problem.
These methods take advantage of both the tridiagonal and symmetric structure and
lead to O(n2) methods. In [38] one computes the eigenvalues by applying Laguerre’s
iteration on the associated characteristic polynomial of the pencil. In [6, 29] a divide-
and-conquer method is presented. Also methods for the banded symmetric generalized
matrix eigenvalue problem exist [36]. More related references can be found, e.g., in
[38].

In this paper we prove that the dense matrix L−1TL−T is quasi-separable; that
is, all submatrices taken out of the strictly lower triangular part of this matrix are of
rank at most one (see [26, 24]).

We show how to efficiently compute the representation of the quasi-separable
matrix L−1TL−T . As the quasi-separable matrix is highly structured, only O(n)
parameters are needed to define it. We will represent the quasi-separable matrix
using the Givens-vector representation [55]. A fast O(n) method for transforming the
generalized eigenvalue problem into an eigenvalue problem involving a quasi-separable
matrix will be given.

Based on the O(n) representation of the quasi-separable matrix, alternative fast
methods for computing the whole spectrum are reviewed. We refer to section 3 for
an overview.

The manuscript is organized as follows. In the first section some definitions and a
theoretical proof of the structure of the matrix L−1TL−T are given. To conclude this
section a description is given of the representation used for the quasi-separable matrix
and a method for effectively computing the quasi-separable matrix representation of
L−1TL−T . Section 3 discusses some methods for computing the eigenvalues of quasi-
separable matrices. The final section of this manuscript presents the implementation
and some numerical experiments related to the accuracy of the new technique for
computing the eigenvalues of the generalized eigenvalue problem.

2. Transforming the generalized eigenvalue problem. We begin with a
couple of definitions.

Definition 2.1. A matrix A ∈ Rn×n is called quasi-separable if any submatrix
taken out of the strictly lower and strictly upper triangular part has rank at most one.
More precisely this means that1

rankA(i : n, 1 : i− 1) ≤ 1 for all i = 2, . . . , n,
rankA(1 : i− 1, i : n) ≤ 1 for all i = 2, . . . , n.

We will also need to refer to lower/upper triangular semiseparable matrices, whose
definition is given below.

1We use the colon notation.
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Definition 2.2. A matrix A ∈ Rn×n is called semiseparable if any submatrix
taken out of the lower and upper triangular part has rank at most 1; that is, semisep-
arable matrices satisfy

rankA(i : n, 1 : i) ≤ 1 for all i = 1, . . . , n,
rankA(1 : i, i : n) ≤ 1 for all i = 1, . . . , n.

A matrix is called lower (resp., upper) semiseparable or quasi-separable if only
the lower (resp., upper) triangular part satisfies the rank constraints.

The only difference between quasi-separable and semiseparable is the fact that a
quasi-separable matrix does not have the diagonal included in the low rank structure,
whereas a semiseparable matrix does have this diagonal included in the structure.
Even though these definitions seem little different from each other, there are quite
significant differences. For example, the inverse of a semiseparable matrix is of tridi-
agonal form, whereas the inverse of a quasi-separable matrix is again a quasi-separable
matrix. The quasi-separable class of matrices contains also the semiseparable and the
tridiagonal matrices.

In this paper some of the discussed references deal with semiseparable plus di-
agonal matrices instead of quasi-separable matrices. The techniques presented can,
however, be adapted easily to be applicable on quasi-separable matrices.

2.1. Theoretical proof of the structure. Let us reconsider now the matrix
product L−1TL−T , with L satisfying S = LLT . Due to the fact that the matrix S is
tridiagonal, the matrix L will be of lower bidiagonal form, and the matrix L−1TL−T

will be of quasi-separable form. We will formulate this as a theorem.
Theorem 2.3. For a symmetric tridiagonal matrix T and a nonsingular lower

bidiagonal matrix L, the product

A = L−1TL−T

is a symmetric quasi-separable matrix.
Proof. We assume the considered matrices to be of size n. It is well known that

the inverse of a lower bidiagonal matrix is a lower triangular semiseparable matrix
(see, e.g., [31]).

The QR-factorization of such a lower semiseparable matrix can be computed by
performing a bottom-up sequence of Givens transformations, n − 1 in total. More
precisely the first Givens transformation is performed on the bottom two rows of the
matrix L−1 to remove the complete last row up to the diagonal. Note that it is possible
to remove this complete row with one transformation as the last and second-to-last
rows are dependent on each other due to the semiseparable structure. The second
Givens transformation acts on rows n− 2 and n− 1 and removes the whole row n− 1
up to the diagonal. This procedure can easily be repeated and gives us the following
factorization:

GT
1G

T
2 . . .G

T
n−2G

T
n−1L

−1 = R,

with R an upper triangular matrix. This means that L−1 = Gn−1Gn−2 . . .G2G1R,
which is the QR-factorization of the considered matrix.

Let us now look closer at the structure of the matrix

L−1T = Gn−1Gn−2 . . . G2G1RT.
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The matrix RT is upper Hessenberg.
The remainder of the proof proceeds by finite induction. Let Ã(k) = Gk . . . G1RT .

The Givens transformationsGi equal the identity matrix except for the diagonal block
Gi(i : i+ 1, i : i+ 1), which is of the following form:

Gi(i : i+ 1, i : i+ 1) =
[
ci −si

si ci

]
, where c2i + s2i = 1.

For every k (with 1 ≤ k ≤ n− 1) we will prove that the constraints

rank Ã(k)(i : n, 1 : i− 1) ≤ 1 for all i = 2, . . . , n(2.1)

are satisfied. Therefore, every intermediate matrix Ã(k) as well as Ã(n−1) = L−1T
will be of lower quasi-separable form.

• Consider k = 1. The matrix Ã(1) = G1RT is a Hessenberg matrix, in which
we denote the first subdiagonal element as v1:

Ã(1) =

⎡⎢⎢⎢⎢⎢⎣
× × × × · · ·
× × × × · · ·
× × ×
× ×

. . . . . .

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
× × × × · · ·
v1 × × × · · ·
× × ×
× ×

. . . . . .

⎤⎥⎥⎥⎥⎥⎦ .

The constraints (2.1) are clearly satisfied. For simplicity we include the case
k = 2.
• Assume k = 2. The matrix Ã(2) = G2G1RT will be of the following form (in

the right-hand matrix we denote the element in position (3, 2) by v2):

Ã(2) =

⎡⎢⎢⎢⎢⎢⎣
× × × × · · ·
c2v1 × × × · · ·
s2v1 × × ×

× ×
. . . . . .

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
× × × × · · ·
c2v1 × × × · · ·
s2v1 v2 × ×

× ×
. . . . . .

⎤⎥⎥⎥⎥⎥⎦ .
• By induction we assume that the statement holds for k−1. Let us show rows
k − 2, k − 1, k, and k + 1 of the matrix Ã(k−1):⎡⎢⎢⎢⎢⎢⎢⎣

. . .
ck−2sk−3 · · · s3s2v1 ck−2sk−3 · · · s3v2 · · · ck−2vk−3 ×
ck−1sk−2 · · · s3s2v1 ck−1sk−2 · · · s3v2 · · · ck−1sk−2vk−3 ck−1vk−2 ×
sk−1sk−2 · · · s3s2v1 sk−1sk−2 · · · s3v2 · · · sk−1sk−2vk−3 sk−1vk−2 vk−1 ×

0 0 · · · 0 0 0 ×
. .

.

⎤⎥⎥⎥⎥⎥⎥⎦
Performing the Givens transformation Gk on Ã(k−1) gives us the matrix Ã(k)

which is of the following form (only rows k−1, k, k+1, and k+1 are depicted):⎡⎢⎢⎢⎢⎢⎢⎣
. . .

ck−1sk−2 · · · s3s2v1 ck−1sk−2 · · · s3v2 · · · ck−1vk−2 ×
cksk−1sk−2 · · · s3s2v1 ckck−1sk−2 · · · s3v2 · · · cksk−1vk−2 ckvk−1 ×
sksk−1sk−2 · · · s3s2v1 sksk−1sk−2 · · · s3v2 · · · sksk−1vk−2 skvk−1 vk ×

0 0 . . . 0 0 0 ×
. . .

⎤⎥⎥⎥⎥⎥⎥⎦

One can check that the resulting matrix is lower quasi-separable. This con-
cludes the induction procedure.
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Based on the induction procedure we can conclude that the matrix L−1T is lower
quasi-separable.

Due to the fact that the matrix L−T is upper triangular, it is obvious that a
multiplication of L−1T on the right with the matrix L−T does not change the low rank
structure below the diagonal. Hence we have proved that our matrix A = L−1TL−T

has the lower triangular part of quasi-separable form. Due to symmetry also the
upper triangular part satisfies these constraints, and hence the complete matrix is
quasi-separable.

Let us now see how we can effectively represent a quasi-separable matrix and how
to compute this representation.

2.2. The Givens-vector representation. We proved in the previous theorem
that the resulting matrix is of quasi-separable form. To be able to work with the
matrix an effective representation of the low rank part is necessary. A straightforward
choice might be to represent the low rank part as coming from a rank-one matrix.
This means representing the lower triangular part as coming from uvT , with u and v
two vectors. This is, however, a bad choice. First, this representation does not cover
all kinds of quasi-separable matrices (consider, e.g., a tridiagonal matrix), and second,
it suffers heavily from numerical instabilities, when computing, e.g., the spectrum via
a QR-method for quasi-separable matrices. More information on the problems with
this representation can be found in [55]. There exist various kinds of other suitable
representations, such as the quasi-separable [26, 19], diagonal-subdiagonal [46, 32],
and Givens-vector representation [55, 16].

In this manuscript we will focus on the Givens-vector representation. There are
several reasons to prefer this representation above the other ones. First, it uses
3n− 3 parameters for representing a symmetric quasi-separable matrix, whereas the
quasi-separable representation uses 4n− 2 parameters. These extra n+ 1 parameters
used in the quasi-separable representation are therefore not uniquely determined.
A good choice of these n + 1 (almost free) parameters is important for numerical
stability reasons. Second, it can be considered as an extension of the straightforward
uvT representation of a rank-one matrix. A third reason for using the Givens-vector
representation is that it is based on unitary transformations, which are stable, and
a single vector. Possible numerical instabilities occur only in the presence of small
or large elements in the vector and are therefore easily recognized. In the numerical
experiments we will see that the representation provides accurate results, even for
some very ill-conditioned problems.

It is important to note that the Givens-vector representation is strongly related
to the QR-factorization of the considered low rank part. We will come back to this at
the end of this section. A final reason for choosing the Givens-vector representation
is the ease of constructing the representation in this case. This will be shown further
in the text.

Let us briefly recapitulate some of the results for this representation. We will
first show how to reconstruct a low rank part based on Givens transformations and
a vector. Secondly we will show how to retrieve the representation given a matrix of,
e.g., quasi-separable form.

To represent the strictly lower triangular part of the quasi-separable matrix, we
will use a representation consisting of n−2 Givens transformationsG = [G1, . . . , Gn−2]
and a vector v = [v1, . . . , vn−1] of length n − 1. The diagonal of the quasi-separable
matrix is stored separately, leading to a global storage of 2n− 1 elements and n − 2
Givens transformations. To represent the matrices T and S, 4n − 2 elements are
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needed; to represent the quasi-separable matrix L−1TL−T , essentially only 3n − 3
parameters are used. For actual implementations, however, we will not store the
Givens transformations by a single parameter, but both the sine and cosine will be
stored. So, in the practical implementation 4n− 5 parameters are used.

The following figures denote how the strictly lower triangular part of the matrix
can be reconstructed. We show here only the strictly lower triangular part of the
quasi-separable matrix. Initially one starts on the first two rows of the strictly lower
triangular part. The element v1 is placed in the upper left position, then a Givens
transformation is applied, and finally, to complete the first step, element v2 is added
in position (2, 1). Only the first two columns and rows are shown here:[

v1 0
0 0

]
→ G1

[
v1 0
0 0

]
+
[

0 0
0 v2

]
→
[
c1v1 0
s1v1 v2

]
.

The second step consists of applying the Givens transformation G2 to the second and
the third row; furthermore, v3 is added in position (3, 3). Here only the first three
columns are shown and the second and third row. This leads to[

s1v1 v2 0
0 0 0

]
→ G2

[
s1v1 v2 0

0 0 0

]
+
[

0 0 0
0 0 v3

]
→
[
c2s1v1 c2v2 0
s2s1v1 s2v2 v3

]
.

This process can be repeated by applying the Givens transformation G3 to the third
and the fourth row of the matrix, and afterwards adding the diagonal element v4.
After applying all the Givens transformations and adding all the diagonal elements,
the strictly lower triangular part of a quasi-separable matrix has been constructed.
Because of the symmetry also the strictly upper triangular part is known. Finally
one obtains a lower triangular matrix which equals the strictly lower triangular part
of the matrix L−1TL−T :

(2.2)

⎡⎢⎢⎢⎣
c1v1
c2s1v1 c2v2
c3s2s1v1 c3s2v2 c3v3

...
...

. . .

⎤⎥⎥⎥⎦ .
We remark that the construction of the quasi-separable part of the matrix resem-

bles the application of the Givens transformations to the Hessenberg matrix in the
proof of Theorem 2.3.

Once the Givens-vector representation of, e.g., quasi-separable or semiseparable
matrices is known, many techniques exist for solving systems of equations and com-
puting eigenvalues [53]. How to retrieve the representation is, however, not always
trivial. A general technique for retrieving a low rank representation, of undetermined
rank, is based on cross-approximation. This is a relatively cheap technique and suit-
able for a wide variety of structured rank matrices [49, 48]. In many cases, however,
the Givens-vector, the uvT , or the quasi-separable representation is already known,
e.g., as the result of inverting a band matrix [43] or applying an orthogonal similarity
reduction to a semiseparable form [50]. We will not go into the details (see [57] for
a complete exposition on several representations and how to compute them), but for
semiseparable matrices as in Definition 2.2 there is a close relation between the QR-
factorization and the Givens-vector representation. More precisely if one computes
the QR-factorization of the semiseparable matrix by a sequence of bottom-up Givens
transformations (exactly n− 1 are needed), then these Givens transformations corre-
spond to the Givens transformations of the Givens-vector representation. The vector
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can then be computed by some minor calculations. The fact that the Givens trans-
formations of the QR-factorization coincide with the Givens transformations of the
Givens-vector representation will come in handy when computing the representation
of the quasi-separable matrix. For a quasi-separable matrix A also such a relation
holds, but in this case one needs to compute the QR-factorization of A(2 : n, 1 : n−1).

2.3. Computing the Givens-vector representation. Let us now show how
to compute the representation of the quasi-separable matrix. Several things need to
be computed. To obtain the Givens-vector representation of the matrix L−1TL−T , we
need to compute intermediate representations of the matrices L−1 and TL−T . These
representations are used for computing the Givens-vector representation of L−1TL−T .

We will depict now all consecutive steps for computing the representation. Pseu-
docode for the implementation can be found in subsection 4.1.

• Compute the Givens-vector representation for L−1. The matrix L is
lower bidiagonal; hence its inverse is a lower semiseparable matrix. Therefore,
this matrix can be represented by a Givens-vector representation.

– The Givens transformations. (8n − 8 operations.2) There exists a se-
quence of Givens transformations Gn−1 . . . G1 applied on the right of
the matrix L such that LGn−1 . . . G1 = B is an upper bidiagonal ma-
trix. This corresponds to computing the RQ-factorization of the matrix3

L = B(GT
1 . . .G

T
n−1). The Givens transformationGn−1 works on the last

two columns, the transformation Gn−2 on columns n− 2 and n− 1 and
so forth. Inverting L leads to

L−1 = Gn−1 . . . G2G1B
−1.

Since the right-hand side is in fact a QR-factorization of the matrix L−1,
the Givens transformationsG1, . . . , Gn−1 coincide with the Givens trans-
formations in the Givens-vector representation of L−1. In the remaining
calculations often the tangent of the corresponding Givens transforma-
tions is desired. Let us denote si as the sine, ci as the cosine, and
τi = si/ci as the tangent corresponding to Givens transformation Gi.

– The vector in the Givens-vector representation. As the diagonal ele-
ments of L−1 are the inverses of the diagonal elements of L, one has as
representation the Givens transformations from above, with the corre-
sponding vector:

(2.3) vL =
[

1
l11c1

,
1

l22c2
, . . . ,

1
ln−1,n−1cn−1

,
1
lnn

]
,

with L = (lij). We remark that these computations are well defined, as
one can easily verify that all cosines in the different Givens transforma-
tions are different from zero. A cosine equal to zero translates to the fact
that a diagonal element of L needed to be zero, which is not possible
due to the positive definiteness of S.
However, in the next bullets we will notice that the division by the
cosines ci is not necessary. It creates extra operations and can cause
numerical instabilities in case of small cosines. In fact, in most of the

2An operation consists of performing one of the following operations: +,−,×, /.
3One can also consider L (Gn−1 . . . G1) = B as the LQ-factorization of the matrix B.
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computations only the diagonal of L−1 is involved. Hence, we do not
compute the vector from the Givens-vector representation. We keep this
in mind and compute these elements only when absolutely necessary.

• Compute the representation of the matrix TL−T . The matrix TL−T

is a Hessenberg matrix having the upper triangular part of quasi-separable
form. Hence we have to compute the Givens-vector representation for the
strictly upper triangular part, the diagonal and subdiagonal elements of the
Hessenberg-matrix H = TL−T . Define T = (tij) and H = (hij). Some
intermediate values for reducing the computations are stored in α, β, γ, δ.
These extra vectors require an additional 4n memory but can reduce the
computational cost from 37n− 49 operations to 30n− 49, an improvement of
almost 20%.

– Its diagonal elements. (5n − 5 operations.) Straightforward computa-
tions lead to

h11 = β1, with β1 =
t11
l11
,

hii = αi ci + βi, with αi =
ti,i−1 τi−1

li−1,i−1
, βi =

tii
lii
,

(for all i = 2, . . . , n− 1)

hnn = αn + βn, with αn =
tn,n−1 τn−1

ln−1,n−1
, βn =

tnn

lnn
.

The above equations show that using the vector vL in (2.3) from the
Givens-vector representation of L−1 would only complicate matters.

– Its subdiagonal elements. (Not computed.) The subdiagonal elements
can be computed as follows:

hi+1,i =
ti+1,i

lii
(for all i = 1, . . . , n− 1).

However, they are not essential for the construction of the quasi-separable
matrix, due to symmetry of the final matrix L−1TL−T .

– The Givens-vector representation of the strictly upper triangular part.
(7n− 12 operations.) The Givens transformations are exactly the same
as the one used above, only one fewer is required: G2, G3, . . . , Gn−1.
The vector of the representation of this upper triangular part can be
obtained by computing the superdiagonal elements of the matrix TL−T

and dividing them by the corresponding cosines of the Givens trans-
formations. As before, we will not, however, divide these elements by
the cosines, but continue working with the superdiagonal elements and
perform the division only when absolutely necessary.
The following formulas compute the superdiagonal elements:

h1,2 = β1 τ1 c2 +
t12
l22
,

hi,i+1 = αi γi + βi τi ci+1 +
ti,i+1

li+1,i+1
, with γi = sici+1

(for i = 2, . . . , n− 2),

hn−1,n = αn−1 sn−1 + βn−1 τn−1 +
tn−1,n

ln,n
.
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• Compute the representation of the matrix A = L−1TL−T . It was
proven before that the matrix is a symmetric quasi-separable matrix. Hence
we need the Givens-vector representation of the strictly lower triangular part
as well as the diagonal elements.

– Compute the diagonal elements. (7n− 11 operations.) To compute the
diagonal elements, one can use the following loop (with t a temporary
variable):

a11 =
h11

l11
,

t = δ1, with δ1 =
τ1 h12

l11
.

Iterate now for i = 2, . . . , n− 2 the following equations:

aii =
hii

li,i
+ t ci,

t = (t γi + δi ) τi, with δi =
hi,i+1

li,i
.

Finally we have the last two diagonal elements:

an−1,n−1 =
hn−1,n−1

ln−1,n−1
+ t cn−1,

t = (t sn−1 + δn−1) τn−1, with δn−1 =
hn−1,n

ln−1,n−1
,

ann =
hnn

lnn
+ t.

– The Givens-vector representation of the strictly lower triangular part.
(3n− 3 operations.) Based on the relations discussed before we obtain

L−1TL−T =
(
BGT

1 G
T
2 . . . G

T
n−1

)−1
TL−T

= Gn−1 . . . G2

(
G1B

−1TL−T
)
.

Combining the factors G1B
−1TL−T = H , we get an upper Hessenberg

matrix. Hence it is clear due to construction that the Givens transfor-
mations G2 up to Gn−1 are the Givens transformations needed for the
Givens-vector representation of the quasi-separable part in the matrix.
The multiplication between the lower semiseparable matrix L−1 and the
strictly upper triangular part of (TL−T ), which is of quasi-separable
form, can be done in O(n) operations. Writing down the lower semisep-
arable matrix and the strictly upper triangular part of the matrix TL−T

as in (2.2), one can easily deduce a simple loop which computes the sub-
diagonal elements of the new quasi-separable matrix. Based on these
subdiagonal elements and on the fact that the cosines of the Givens
transformations are different from zero, one can easily obtain the repre-
sentation of the strictly lower triangular part.
The sub- or superdiagonal elements can be computed as follows:

a12 = δ1,

ai+1,i = ai,i−1 τi−1 γi + δi (for i = 2, . . . , n− 1),
an,n−1 = an−1,n−2 τn−2 sn−1 + δn−1.
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Summarizing, the complexity of computing the Cholesky decomposition of the
positive definite tridiagonal matrix takes 5n− 3 operations. Computing the represen-
tation of the quasi-separable matrix takes 30n− 49 operations. Hence the total cost
for computing the representation of the quasi-separable matrix is 35n−52 operations.

Traditionally, one assumed that the approach of computing the eigenvalues via
L−1TL−T was too expensive because the reduction to tridiagonal form of a dense
matrix already took O(n3) operations. This reduction was essential before being able
to compute the spectrum in O(n2) operations, via, for example, a divide-and-conquer
technique or aQR-algorithm. Using the method presented above, however, we see that
it takes O(n) operations to obtain the representation of the quasi-separable matrix.
For this quasi-separable matrix there exist techniques O(n2) for computing the whole
spectrum. In the next section we will briefly discuss some of these methods.

3. Computing the eigenvalues of a quasi-separable matrix. We do not
go into the details of how to compute the eigenvalues of quasi-separable matrices.
Pointers to manuscripts in which all the essential information can be found will be
given. For solving the overall problem, in fact, only the eigenvalues of the quasi-
separable matrix are necessary. The eigenvectors can be computed afterwards, based
on the equation Tx = λSx, once the eigenvalues are known. This can be done in
O(n2) operations.

Alternatively, one can also compute the eigenvectors of the quasi-separable matrix
and then transform them back to the original problem at a cost of O(n2), exploiting
the bidiagonal structure of L. The cost of this second approach is dependent on how
efficiently the eigenvectors of the quasi-separable matrix are computed. This can lead
to O(n3) as well as O(n2) methods; in the next subsection some complexities for
different approaches are given.

3.1. Reduction to tridiagonal form. Due to the specific rank structure of the
matrix A, we can reduce this matrix to tridiagonal form in O(n2) operations instead of
the traditional reduction, which needs O(n3) operations. There exist several variants
to reduce a quasi-separable matrix to tridiagonal form [30, 40]. In fact, the traditional
algorithms are adapted to fully exploit the rank structure in the involved matrices.
Also a parallel method to reduce a quasi-separable matrix to tridiagonal form was
developed in [39], starting the reduction to tridiagonal form simultaneously at two
sides of the matrix. Recently also more general reduction schemes, to reduce arbitrary
structured rank matrices to tridiagonal (Hessenberg in the nonsymmetric case), were
proposed [15, 25]. All presented algorithms are of order O(rn2), where r is a factor
related to the rank of the structured rank parts. Remember that in our case we
consider a quasi-separable matrix of quasi separability rank r = 1.

The benefit of reducing the quasi-separable matrix to tridiagonal form is that one
can use all available solvers for tridiagonal matrices. The reduction to tridiagonal
form costs, however, O(n2) operations, which is of the same order as computing the
full spectrum. This reduction cost is not needed, however, if one applies methods
which are directly applicable to the quasi-separable matrix.

On the other hand, plenty of robust and efficient methods for tridiagonal ma-
trices exist (LAPACK/Matlab implementations are available); e.g., the QR-method
for tridiagonal matrices is discussed in many textbooks [33, 44, 17, 58] (O(n2) for
computing the eigenvalues, O(n3) when computing the eigenvectors by accumulating
the unitary transformations performed as is done in the current LAPACK implemen-
tation), divide-and-conquer methods [5, 6, 35, 11, 8] (O(n2) if only eigenvalues are
desired, in the worst case O(n3) for the eigenvectors; in practice, however, the ex-
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ponent is less than 3), bisection and inverse iteration [42, 13] (O(n2) for the whole
spectrum; in case of well separated eigenvalues it takes O(n2) operations for all eigen-
vectors; otherwise, in case of clusters it might result in O(n3) operations), the MRRR
algorithm, which is an adapted version of inverse iteration, not using Gram–Schmidt
orthogonalization [23, 20, 21, 22, 45] (this method requires O(n2) for computing both
eigenvalues and eigenvectors), etc. A recent overview of these methods, comparing
them in LAPACK, was given in [18]. When applying the QR-algorithm to the result-
ing tridiagonal matrix, one applies in a certain sense a tuned Cholesky-QR method,
exploiting the quasi-separable structure for reducing the matrix to tridiagonal form.
This tuned Cholesky-QR method also involves only O(n2) operations for computing
the whole spectrum as well as the eigenvectors, when using, e.g., MRRR.

3.2. Applying the QR-algorithm directly on the quasi-separable ma-
trix. The last few years people have intensively studied QR-algorithms for structured
rank matrices. Let us present some of these results. There is an implicit QR-algorithm
for semiseparable matrices [54] and and implicit one for semiseparable plus diagonal
matrices [51]. Explicit QR-algorithms for higher order quasi-separable matrices can
be found in [28, 14]. The algorithm for semiseparable plus diagonal matrices is after
minor modifications also suitable for quasi-separable matrices. Recently more general
types of QR-algorithms exist for low rank perturbations of unitary matrices and so
forth [1, 2, 3]. Computing the eigenvalues using the QR-method for quasi-separable
matrices results in an order O(n2) method, whereas computing the eigenvectors by
accumulating the transformations performed imposes a cubical complexity O(n3).

One might be in favor of the QR-method because it is widely spread and these
methods are directly applicable on the quasi-separable matrices. Unfortunately QR-
methods for quasi-separable matrices have a higher computational complexity (50%)
w.r.t. the QR-method than do tridiagonal matrices. Nevertheless they provide accu-
rate results. Recently, however, also a faster algorithm for computing the spectrum of
structured rank matrices was proposed [56]. The method is based on a QR-iteration
driven by a rational function. The resulting method is much faster than the traditional
QR-methods for rank structured matrices.

3.3. Other methods. As mentioned in the introduction also different tech-
niques for computing the eigenvalues of quasi-separable matrices exist. For example,
the bisection method and a method based on Sturm sequences can be found in [27].
With the bisection method one can compute a single eigenvalue in an interval, whereas
the Sturm sequences method is an adaptation of the bisection method to compute
the kth largest eigenvalue. Computing a single eigenvalue involves O(n) operations,
whereas computing the full spectrum requires O(n2) flops.

Another technique is based on halving the problem size at every step of the
algorithm. These so called divide-and-conquer methods are based on solving the
secular equation [41, 10].

Both methods mentioned above need O(n2) operations for computing the whole
spectrum. Up till now the divide-and-conquer method for quasi-separable and semisep-
arable plus diagonal matrices is the fastest and most accurate available method for
computing the spectrum of quasi-separable matrices. Hence we choose to use this
method for computing the eigenvalues of the corresponding quasi-separable matrix in
the upcoming numerical experiments. Computing all eigenvectors increases the com-
putational complexity and can lead to O(n3). Using specialized techniques based on
the FMM method [9, 34] as discussed in [10] can reduce the complexity of computing
the eigenvectors to O(n2 log(n)).
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4. Numerical experiments. In this section we will present results concerning
the timings and accuracy of the presented approach. We chose to use the divide-
and-conquer method for computing the eigenvalues and eigenvectors of the consid-
ered quasi-separable matrices. To our knowledge this algorithm is among the fastest
available methods and provides accurate results when computing the eigenvalues of
quasi-separable matrices. The software was implemented in Matlab and executed
on a Linux platform. The divide-and-conquer approach used is the one from [41],
where we needed to adapt the software, as the implementation as presented in [41]
(the straightforward solver) was based on the generator representation whereas the re-
sulting quasi-separable matrix in our approach is represented using the Givens-vector
representation.

In the following experiments the relative forward error and relative backward
error are computed. First the pseudocode for generating the quasi-separable matrix
is given.

Recall that the presented method and Laguerre’s iteration take O(n2) opera-
tions for computing the eigenvalues. The standard Cholesky-QR and QZ-approach
take O(n3) operations for computing the eigenvalues. We use the Matlab built-in
functions for performing the QZ and Cholesky-QR approach, which are of the or-
der O(n3). We remark, however, that one can reduce the complexity count of the
Cholesky-QR method from O(n3) to O(n2) when using an adapted reduction of the
quasi-separable matrix to tridiagonal form. However, in this case also one has to
exploit the quasi-separable structure. Even though one can reduce the Cholesky-QR
complexity from O(n3) to O(n2), the constant will be larger than the one in the
quasi-separable approach combined with the divide-and-conquer method. Once the
eigenvalues are known various methods exist (O(n2) and O(n3)) for computing the
eigenvectors; hence we will not go into the details related to eigenvectors.

We can, therefore, already conclude that the quasi-separable approach is as fast
as Laguerre’s iteration and faster than the Cholesky-QR and the QZ by a factor n
(from O(n2) to O(n3)). Keep in mind that quasi-separable techniques can be used
for tuning the Cholesky-QR method in order to obtain an O(n2) approach.

We will therefore not focus on the complexity of the methods, but on a comparison
of the accuracy of the four methods.

4.1. The pseudocode. We will present the pseudocode for computing the rep-
resentation of the quasi-separable matrix L−1TL−T . The case where n = 1 and n = 2
is trivial and not covered.

Explanation of some variables used in the pseudocode:
• dX stands for the diagonal of the matrix X ;
• sdX stands for super(sub)diagonal of the matrix X ;
• uh stands for the upper Hessenberg matrix TL−T ;
• Combinations lead to, for example, sbduh, which means the subdiagonal of

the upper Hessenberg matrix TL−T .
• G will contain the Givens transformations of the Givens-vector representation.

This is a 2 × (n − 1) matrix. Each column corresponds to a Givens trans-
formation. The first element in each column contains the sine, the second
element the cosine.
• v will contain the vector from the Givens-vector representation.

1. % Compute the Cholesky decomposition S=LL^T

Store the diagonal in dL, the subdiagonal in sdL

2. % Compute the RQ-factorization of the matrix L

Initialize: G(1,i-1)=1;
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for i=n,n-1,n-2,...,2

[cosine,sine,tau(i-1)]=givens(Giv(1,i-1)*dL(i),sdL(i-1));

Store the cosine and the sine in column i-1 of G;

end for;

3. % Construct the represention of the upper Hessenberg matrix T L^{-T}

% Compute the diagonal elements of T L^{-T}

Initialize: beta(1)=dT(1)/dL(1); duh(1)=beta(1);

for i=2,3,...,n-1

alpha(i)=sdT(i-1)/dL(i-1)*tau(i-1)

beta(i)=dT(i)/dL(i);

duh(i)=alpha(i)*G(1,i)+beta(i);

end for

duh(n)=sdT(n-1)/dL(n-1)*tau(n-1)+dT(n)/dL(n);

4. % Compute the superdiagonal elements of T L^{-T}

Initialize: sduh(1)=beta(1)*tau(1)*G(1,2)+sdT(1)/dL(2);

for i=2,3,...,n-2

gamma(i)=G(2,i)*G(1,i+1);

sduh(i)=alpha(i)*gamma(i)+beta(i)*tau(i)*G(1,i+1)+sdT(i)/dL(i+1);

end for

sduh(n-1)=alpha(n-1)*G(2,n-1)+beta(n-1)*tau(n-1)+sdT(n-1)/dL(n);

5. % Compute the representation for L^{-1} T L^{-T} and the diagonal

Initialize: d(1)=duh(1)/dL(1);

Initialize: delta(1)=sduh(1)/dL(1); tmp=tau(1)*delta(1);

for i=2,3,...,n-2

d(i)=duh(i)/dL(i)+tmp*G(1,i);

tmp=(tmp*gamma(i)+delta(i))*tau(i);

end for

delta(n-1)=sduh(n-1)/dL(n-1);

d(n-1)=duh(n-1)/dL(n-1)+tmp*G(1,n-1);

tmp=(tmp*G(2,n-1)+delta(n-1))*tau(n-1);

d(n)=duh(n)/dL(n)+tmp;

6. % Compute the subdiagonal

Initialize: sd(1)=delta(1);

for i=2,3,...,n-2

sd(i)=sd(i-1)*tau(i-1)*gamma(i)+delta(i);

end for

sd(n-1)=sd(n-2)*tau(n-2)*G(2,n-1)+delta(i);

7. % Assign the Givens-vector representation

G=G(:,2:n-1); v(1:n-2)=sd(1:n-2)./G(1,:);

Note 4.1. We remark that in several cases a scaled Givens-vector representation
is enough. This means that as input for several structured rank based algorithms one
can pass the variable sd instead of v. If this holds (e.g., in the case of the divide-
and-conquer method), we can omit the last two lines of the routine, in which G and
v are defined. Essentially only G as it is and the vector sd (scaled version of v) are
needed to be able to compute the spectrum via the divide-and-conquer method. Not
performing the division saves us 2n− 2 operations in the overall implementation for
computing the spectrum.

4.2. Relative forward error. In the first experiment we compared the com-
puted eigenvalues with known eigenvalues of the problem. We solved the definite
symmetric generalized eigenvalue problem with two tridiagonal Toeplitz matrices.
The matrix T is constructed with a random element defining the diagonal and a ran-
dom element defining the subdiagonal (generated using rand from Matlab). The
second matrix S has a random subdiagonal element, whereas the diagonal element
is chosen sii = 2 max(si,i−1, si,i+1) + 1. In this way we know that the matrix S is
positive definite and moreover is well conditioned.

As both Toeplitz matrices commute, we can explicitly compute the spectrum of
the generalized eigenvalue problem as it equals the ratios of the eigenvalues of T and
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S. To compute the eigenvalues of both Toeplitz matrices we used the explicit formulas
derived in [7]. For a tridiagonal Toeplitz matrix having subdiagonal t−1, diagonal t0,
and superdiagonal t1 the eigenvalues are given by

t0 +
√
t1t−1 cos

πi

n+ 1
(for i = 1, . . . , n).

Based on these “correct” eigenvalues of the generalized eigenvalue problem, we
performed experiments for sizes ranging from 100 to 1500, and for each experiment
we performed fifteen random tests (with the constraints on S as mentioned above).
Moreover, the eigenvalues of the Toeplitz matrix were computed via variable precision
arithmetic in Matlab to ensure they are correct up to machine precision (16 digits).
The relative forward errors

max
i

|λi − λ̃i|
|λi| ,

where λi denote the “correct” eigenvalues and λ̃i the computed eigenvalues, are plot-
ted in Figure 4.1.

Figure 4.1 shows that the forward error can be pretty large, up to 10−11. When
comparing, however, against the condition number of the symmetric quasi-separable
matrix, we see that the loss of digits is due to the condition number, which sometimes
reaches approximately 105.

Comparing the quasi-separable approach with both other approaches, we see that
overall it has the best forward error. In the upcoming experiment we see that the bad
results are due to the conditioning of the problem, since all backward errors will be
relatively good. The experiment was run for three approaches: the quasi-separable
approach, the QZ-method, and Laguerre’s iteration from [38].

4.3. Relative backward error. In the following set of experiments we com-
pute a relative error involving the eigenvalues and eigenvectors. We first solve the
eigenproblem involving the quasi-separable matrix A:

Ay = λy,

where A = L−1TL−T and y = LTx.
We hence compute the eigenvalues λi corresponding to the eigenvectors yi. To

obtain the eigenvectors xi of the generalized eigenvalue problem, we need to compute
the following:

xi = L−Tyi.

As we know from the theoretical results, the matrix L−T is an upper triangular
semiseparable matrix. Moreover, the representation in terms of Givens transforma-
tions and a vector is known, since it was computed in the algorithm explained in
subsection 2.3. The multiplication between the matrix L−Ty can easily be performed
in O(n) operations (see, e.g., [52]).

For the following set of experiments we took matrix sizes ranging from 100 to
2000, and 15 experiments for each size were considered. The tridiagonal matrix T has
random diagonal and subdiagonal elements. The matrix S has random subdiagonal
elements, and the diagonal elements were taken sii = 2 max(si,i−1, si,i+1)+1, in order
to make the matrix positive definite and well conditioned.
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Fig. 4.1. Relative forward errors on the eigenvalues.

We considered the following relative backward error [37, 12]:

max
i

( ‖Txi − λiSxi‖2
(‖T ‖2 + |λi| ‖S‖2) ‖xi‖2

)
,

where the eigenvectors xi = L−Tyi, eigenvalues λi, and eigenvectors yi were computed
using the presented method. The norm of the matrices T and S was estimated using
the Matlab built-in function normest.
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Fig. 4.2. Relative backward error.
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Fig. 4.3. Comparison of three approaches.

Figure 4.2 clearly illustrates that the quasi-separable method returns a relatively
good backward error for all experiments.

4.4. Comparison of different approaches. In this experiment we will per-
form more specific tests for comparing the accuracy of the proposed method with some
methods available in Matlab. The matrices were generated similarly as in the pre-
vious experiment. For every matrix the eigenvalues and eigenvectors were computed
via the quasi-separable method, the Cholesky-QR approach, and the QZ-method. A
comparison of the relative backward error is depicted in Figure 4.3. It can be seen
that the quasi-separable method has an error comparable to the QZ-method but per-
forms worse than the Cholesky-QR method. Keep in mind that for this experiment
all three methods are O(n3) methods, since both the eigenvalues and eigenvectors
are required. When only the eigenvalues are desired, however, the complexity of the
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Fig. 4.4. Comparison with another O(n2) method.

divide-and-conquer reduces to O(n2), whereas both other methods remain cubical in
the number of operations.

The experiments show that for this type of well-conditioned problems the Cholesky-
QR method is the most accurate one. The quasi-separable method is equally accurate
as the QZ-method.

4.5. Comparison with another O(n2) method. In this section we will com-
pare the method from [38] with the quasi-separable method presented in this paper.
The implementation from [38] was written in Fortran, whereas the code from this
article was written in Matlab. In order to compare the accuracy of both methods
we choose to embed the Fortran code in Matlab via a MEX-file. Since the routine
from [38] only computes the eigenvalues, it is impossible to use the backward error
measure norm from above. The experiments from subsection 4.2 were redone, and
the relative forward error for both approaches is plotted in Figure 4.4.

We see that both methods are equally accurate for the chosen experiments.
Approach 1 corresponds to the quasi-separable method combined with divide-and-
conquer, and Approach 2 is based on an evaluation of the determinant via Laguerre’s
iteration as presented in [38].

4.6. The matrix S is ill conditioned. Let us reconsider in this section Experi-
ment 2 from [38]. We compute the eigenvalues of the generalized definite eigenproblem
in which T is a tridiagonal Toeplitz matrix having 4 on the diagonal and 1 on the
subdiagonal. The matrix S is almost Toeplitz, having the diagonal elements equal to
2 · 10−10, the subdiagonal elements equal to 10−10, and s11 = snn = 1. The condition
number of the matrix S is approximately 1012. First we run tests for several sizes of
the matrices, ranging from 100 to 2000 via steps of size 50. The relative backward
error was computed and plotted for the divide-and-conquer based on quasi-separable
matrices, the QZ-method, and the Cholesky-QR method. Results are presented in
Figure 4.5.

The QZ-method performs the best in this case. The Cholesky-QR method seems
to have a lot of difficulties in finding approximations of the eigenvalues and seems
to provide less accurate results. The quasi-separable method performs significantly
better than the Cholesky-QR method.

We reconsidered this type of experiment, but now we compared the quasi-separable
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Fig. 4.5. Comparison for ill-conditioned S (subdiagonal size 10−10).
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Fig. 4.6. Comparison for ill-conditioned S.

approach with the one based on Laguerre’s iteration from [38]. Based on the previ-
ous experiment, we consider the eigenvalues computed by the QZ-method to be the
correct ones λi. In Figure 4.6 you see the relative forward error.

When comparing the forward error, we see that the quasi-separable method per-
forms the best. Moreover, when the dimension of the problem increases, Laguerre’s
iteration method seems to get into problems and no longer provides accurate results.

5. Conclusions. In this manuscript we showed that one can solve the definite
generalized tridiagonal symmetric eigenvalue problem by transforming it into a stan-
dard symmetric eigenvalue problem and exploiting the quasi-separable structure of the
coefficient matrix. The eigenvalues and eigenvectors can be computed using various
methods. In this manuscript we used the divide-and-conquer method for computing
the eigenvalues in O(n2) operations.

It was shown that the quasi-separable method involves O(n2) operations, the
traditional Cholesky-QR method as well as the QZ-method O(n3) operations, and
the tuned Cholesky-QR method exploiting the quasi-separable structure uses O(n2)
operations. Among all these methods the quasi-separable approach is the fastest
one and, moreover, more accurate than the Cholesky-QR approach in case of an
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ill-conditioned matrix S.
A final comparison between the quasi-separable approach and another O(n2)

method was given, showing that both methods are of a comparable accuracy in
the well-conditioned case, but the quasi-separable method performs better in the
ill-conditioned case.
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STRUCTURED HÖLDER CONDITION NUMBERS FOR MULTIPLE
EIGENVALUES∗
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Abstract. The sensitivity of a multiple eigenvalue of a matrix under perturbations can be
measured by its Hölder condition number. Various extensions of this concept are considered. A
meaningful notion of structured Hölder condition numbers is introduced, and it is shown that many
existing results on structured condition numbers for simple eigenvalues carry over to multiple eigen-
values. The structures investigated in more detail include real, Toeplitz, Hankel, symmetric, skew-
symmetric, Hamiltonian, and skew-Hamiltonian matrices. Furthermore, unstructured and structured
Hölder condition numbers for multiple eigenvalues of matrix pencils are introduced. Particular at-
tention is given to symmetric/skew-symmetric, Hermitian, and palindromic pencils. It is also shown
how matrix polynomial eigenvalue problems can be covered within this framework.

Key words. spectral condition number, sensitivity, structured matrices, Toeplitz matrices,
Hankel matrices, generalized eigenvalue problem, matrix pencils, palindromic pencils
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1. Introduction. Eigenvalue condition numbers asymptotically measure the
sensitivity of an eigenvalue with respect to perturbations. If λ is a simple eigen-
value of a matrix A ∈ Cn×n, then it is well known that λ is differentiable with respect
to perturbations in A and that the eigenvalue λ̂(ε) of the perturbed matrix A + εE
admits the expansion

(1) λ̂ = λ+ (yHEx)ε+O(ε2), ε→ 0,

where x and y are, respectively, a right and a left eigenvector of A (normalized so that
|yHx| = 1) corresponding to λ. Then the absolute condition number for λ, defined as

(2) κ(A, λ) = lim
ε→0

sup
‖E‖≤1

E∈Cn×n

|λ̂− λ|
ε

,

is given by κ(A, λ) = ‖x‖2 ‖y‖2 for any unitarily invariant norm ‖ · ‖. One way to
show this is to consider E = yxH/(‖x‖2 ‖y‖2), which—by inserting in (1)—can be
seen to attain the supremum in (2).

Much of the recent research on eigenvalue condition numbers has been devoted
to the case when the perturbation E is known to be in a set S ⊂ Cn×n of structured
matrices. In this case, it is more appropriate to restrict the supremum in (2) to E ∈ S,
giving rise to the structured eigenvalue condition number κ(A, λ; S). In [9, 40], com-
putable expressions of κ(A, λ; S) for general linear structures S have been developed.
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This has been extended to smooth nonlinear structures in [16]. A simplified expres-
sion for zero-structured matrices can be found in [28]. Trivially, κ(A, λ; S) ≤ κ(A, λ).
It naturally gives rise to the question of whether κ(A, λ; S) can be much smaller than
κ(A, λ), or, in other words, whether λ can be much less sensitive to structured pertur-
bations than to unstructured ones. For surprisingly many structures S the answer to
this question is negative in the sense that κ(A, λ; S) is always at most within a small
factor of κ(A, λ). This has been shown for S = Rn×n in [3], as well as for real skew-
symmetric, skew-Hermitian, Hankel, Toeplitz, Hamiltonian, persymmetric, circulant,
orthogonal, unitary, and related structures in [16, 32]. Practically relevant exam-
ples for which κ(A, λ; S) � κ(A, λ) is possible include complex skew-symmetric [32],
zero-structured [28], and symplectic matrices [16].

If λ is a multiple eigenvalue of algebraic multiplicity m, there is generally not an
expansion of the form (1). Instead, λ bifurcates into m perturbed eigenvalues λ̂k(ε),
each admitting a fractional expansion

(3) λ̂k = λ+ αγk

k ε
γk + o(ε), ε→ 0, k = 1, . . . ,m,

with αk > 0 and 0 < γk ≤ 1 [20, 42, 27]. Under generically satisfied conditions on E,
Lidskii’s theory [20] states that each Jordan block Jnj (λ) of size nj × nj gives rise to
nj perturbed eigenvalues satisfying the expansion (3) with γk = 1/nj. Motivated by
these results, the Hölder condition number for λ is defined in [27] as the pair

(4) κ(A, λ) = (n1, α),

where 1/n1 is the smallest possible power γk of ε in (3) for any perturbation E. The
scalar α1/n1 > 0 is the largest possible magnitude of the coefficient of ε1/n1 for all E
with ‖E‖ ≤ 1. While n1 happens to be the size of the largest Jordan block belonging
to λ, we have

(5) α1/n1 = lim
ε→0

sup
‖E‖≤1

E∈Cn×n

max
k=1,...,m

|λ̂k − λ|
ε1/n1

(see also [5, p. 156] for a similar definition of condition number for multiple eigenvalues,
and [4] for its relationship with κ(A, λ)). An explicit formula for α can be found in [27];
see also section 2. Let us emphasize that for certain nongeneric perturbations E, the
value of γk can be larger than 1/n1 for all λ̂k. This is demonstrated by the following
example [43, 27]. The characteristic polynomial of

(6) A+ εE =

⎡
⎢⎢⎢⎢⎣

0 1 0
0 1

0 ε
0 1

ε 0

⎤
⎥⎥⎥⎥⎦

is ε2 − λ5. Thus, γk = 2/5 for all λ̂k in (3) while 1/n1 = 1/3.
The purpose of this paper is to investigate various extensions of the condition

number (4). In particular, we are interested in the case when E is restricted to a set S

of structured matrices, leading to the notion of a structured Hölder condition number
κ(A, λ; S) = (nS, αS). We begin by noting that there exist structures S for which nS

can be smaller than n1. Consider, for instance, the following example, taken from
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STRUCTURE HÖLDER CONDITION NUMBERS FOR EIGENVALUES 177

[29]: S is the set of complex skew-symmetric matrices,

(7) A =

⎡
⎢⎢⎣

0 1 0 1
−1 0 −i 0
0 i 0 i
−1 0 −i 0

⎤
⎥⎥⎦ ∈ S,

and λ = 0 with geometric multiplicity two and largest Jordan block of size 3, i.e.,
n1 = 3. However, any complex skew-symmetric perturbation E ∈ S gives rise to
O(ε1/2) perturbed eigenvalues so, according to Definition 3.1 below, nS = 2 < n1.

However, for most structures under consideration we have nS = n1. In this case,
it makes sense to compare αS with its unstructured counterpart α. As will be shown
in section 3, many of the results from [3, 16, 32] on structured condition numbers
for simple eigenvalues carry over to multiple eigenvalues. A notable exception to
nS = n1 are complex skew-symmetric matrices, whose zero eigenvalues may exhibit
nS < n1; this is exemplified by (7). The relation nS = n1 holds for nonzero eigenvalues
of a complex skew-symmetric matrix, but αS can be significantly smaller than α, a
fact that has already been observed in [32, 16]. In this paper, we not only provide
additional insight by deriving explicit expressions for αS, but we also cover the more
general class of matrices that are skew-symmetric with respect to an orthosymmetric
bilinear form.

Hölder condition numbers for the generalized eigenvalues of a regular matrix pen-
cil A− λB can be defined similarly employing the perturbation expansions of Langer
and Najman [17, 18, 19]; see also [6]. Structured Hölder condition numbers for
eigenvalues of pencils can be defined analogously, and they have lately received some
attention: results for simple eigenvalues of linearly structured pencils can be found
in [9] and for multiple eigenvalues of definite Hermitian matrix pencils in [35, 36]. The
problem of estimating the (multiple) eigenvalue sensitivities for parameter-dependent
matrix pencils is closely related; see [1, 37, 45] and the references therein. To our
knowledge, the results provided in this paper on structured Hölder condition numbers
for real, symmetric/skew-symmetric, Hermitian, as well as palindromic matrix pencils
are new, even for simple eigenvalues. Furthermore, this framework also allows us to
cover matrix polynomial eigenvalue problems by imposing block companion structure.

The rest of this paper is organized as follows. In section 2 we recall definitions and
provide some basic results on unstructured and structured Hölder condition numbers
for multiple eigenvalues of matrices. Section 3 is devoted to structured Hölder condi-
tion numbers for real, Toeplitz, and Hankel matrices, as well as for matrix classes that
form Jordan or Lie algebras associated with an orthosymmetric bilinear or sesquilinear
form. Section 4 is concerned with Hölder condition numbers for multiple eigenvalues
of generalized eigenvalue problems, first for (structured) matrix pencils and then for
matrix polynomials via companion form. Finally, some conclusions and open issues
not addressed in this paper can be found in section 5.

2. Preliminaries. In the following, we summarize the part of the discussion of
Lidskii’s results in [27] that leads to the condition number (4). Let λ be an eigenvalue
of A ∈ C

n×n, and let n1 be the size of the largest Jordan block corresponding to λ.
The Jordan canonical form of A can be written as

(8)

[
J 0

0 J̃

]
=

[
Q

Q̃

]
A
[
P P̃

]
,
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where

(9)

[
Q

Q̃

] [
P P̃

]
= I

and J consists of all n1 × n1 Jordan blocks corresponding to λ. Specifically, we have

(10) J = diag(Γ1
1, . . . ,Γ

r1
1 ), Γ1

1 = · · · = Γr11 =

⎡
⎢⎢⎢⎢⎣

λ 1
. . . . . .

. . . 1
λ

⎤
⎥⎥⎥⎥⎦ ∈ C

n1×n1 .

The block J̃ contains all Jordan blocks corresponding to λ with dimension smaller
than n1, as well as all Jordan blocks corresponding to eigenvalues different from λ.

The columns of P form r1 linearly independent Jordan chains of length n1, each
of which starts with an eigenvector of A. Collecting these starting vectors in an n×r1
matrix X yields

(11) X =
[
Pe1, P en1+1, . . . , P e(r1−1)n1+1

]
,

where ei denotes the ith unit vector of length n. Similarly we collect in

(12) Y =
[
QHen1 , Q

He2n1 , . . . , Q
Her1n1

]
the left eigenvectors chosen from the r1 independent Jordan chains of length n1 ap-
pearing as rows of Q. Note that each column of Y represents a left eigenvector of A
belonging to λ. Notice also that the relation (9) implies Y HX = I if n1 = 1, and
Y HX = 0 otherwise. With these preparations we can state a highly abridged version
of Lidskii’s result.

Theorem 2.1 (see [20, 27]). Let E ∈ Cn×n such that Y HEX is invertible, where
X and Y are defined as above. Then there are n1r1 eigenvalues of the perturbed matrix
A+ εE admitting a perturbation expansion

(13) λ̂k = λ+ (ξk)1/n1ε1/n1 + o(ε1/n1), k = 1, . . . , r1,

where ξ1, . . . , ξr1 are the eigenvalues of Y HEX.
Since X and Y have linearly independent columns, the invertibility of Y HEX is

generically satisfied for a general perturbation E in Cn×n. Within a set S of structured
perturbations E, however, it may happen that Y HEX is not generically invertible.
Fortunately, the result of Theorem 2.1 remains valid even if Y HEX is singular. This
follows from a very general theory by Moro, Burke, and Overton [27] on the connection
between Newton diagrams and eigenvalue perturbation expansions.

Remark 2.2 (see [27, p. 809]). Let E ∈ C
n×n such that Y HEX is singular.

Then each of the β < r1 nonzero eigenvalues ξ1, . . . , ξβ of Y HEX gives rise to n1

perturbation expansions of the form (13). The remaining r1 − β zero eigenvalues
correspond to expansions where the exponent of the leading nonzero perturbation
term is strictly larger than 1/n1.

Theorem 2.1 implies that, for sufficiently small ε, the worst-case change in λ is
caused by an eigenvalue of Y HEX that is as large as possible in magnitude. This
motivates the following definition.
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Definition 2.3 (see [27]). Let λ be an eigenvalue of A ∈ Cn×n, and let the
Jordan canonical form of A be given by (8). The (absolute) Hölder condition number
of λ is given by κ(A, λ) = (n1, α), where n1 is the size of the largest Jordan block
associated with λ in (8) and

(14) α = sup
‖E‖≤1

E∈Cn×n

ρ(Y HEX),

where ρ(·) denotes the spectral radius of a matrix.
We have ρ(Y HEX) = ρ(EXY H) ≤ ‖EXY H‖2 ≤ ‖XY H‖2 for the matrix 2-norm

‖ · ‖2. To show equality, we have to construct a perturbation E so that ρ(Y HEX) =
‖XY H‖2 is attained. The following basic lemma helps identify such perturbations.

Lemma 2.4. Let

XY H = UΣV H

be a singular value decomposition, such that U ∈ Cn×r1 , V ∈ Cn×r1 have orthonormal
columns and Σ = diag(σ1, . . . , σr1) with σ1 ≥ · · ·σr1 ≥ 0. Consider E = V DUH with
D = diag(1, δ2, . . . , δr1) such that δj ≤ 1. Then ρ(Y HEX) = ‖XY H‖2.

Proof. The result follows from

ρ(Y HEX) = ρ(EXY H) = ρ(V DΣV H) = ρ(DΣ) = ‖DΣ‖2 = ‖Σ‖2 = ‖XY H‖2.

Note that the definition of α in (14) depends on the norm ‖·‖ used in the constraint
‖E‖ ≤ 1. For unitarily invariant norms, we have the following result.

Theorem 2.5 (see [27]). The Hölder condition number (n1, α) of an eigenvalue
λ satisfies α = ‖XY H‖2 for any unitarily invariant norm ‖ · ‖ in (14).

Proof. Setting D = diag(1, 0, . . . , 0) and E = V DUH in Lemma 2.4 gives ‖E‖ = 1
and thus proves α = ‖XY H‖2.

It is important to note that for a specific norm, choices of D other than the one
used in the above proof are possible; e.g., for ‖ · ‖ ≡ ‖ · ‖2, any E in the sense of
Lemma 2.4 gives ‖E‖2 = 1. In particular, setting D = Σ/σ1 yields

(15) E =
Y XH

‖XY H‖2 ,

which resembles the classical perturbation matrix for simple eigenvalues [43]. This
type of perturbation will often be used when proving that the structured and the un-
structured condition numbers coincide for the 2-norm. Another class of perturbations
which turns out to be very useful is given by the following lemma.

Lemma 2.6. Let u1, v1 ∈ Cn×n with ‖u1‖2 = ‖v1‖2 = 1 be left/right singular
vectors belonging to the largest singular value of XY H . Choose E ∈ Cn×n such that
Eu1 = βv1 with |β| = 1. Then ρ(EXY H) ≥ ‖XY H‖2.

Proof. LetXY H = UΣV H be a singular value decomposition with U = [u1, . . . , un],
V = [v1, . . . , vn]. Then

ρ(EXY H) = ρ(EUΣV H) = ρ(V HEUΣ) = ρ(V H [βv1, Ev2, . . . , Evn]Σ)

= ρ

([
β‖XY H‖2 �

0 �

])
≥ ‖XY H‖2.
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3. Structured Hölder condition numbers. Throughout the whole section,
λ denotes an eigenvalue of A with Hölder condition number κ(A, λ) = (n1, α). The
matrices X and Y are defined as in (11) and (12), respectively.

Restricting the range of admissible perturbations E from Cn×n to a subset S ⊂
C
n×n leads to a corresponding structured condition number κ(A, λ; S) = (nS, αS).

Definition 3.1. Let λ be an eigenvalue of A ∈ Cn×n, and let S be a sub-
set of Cn×n. The (absolute) structured Hölder condition number of λ is given by
κ(A, λ; S) = (nS, αS), where 1/nS is the smallest possible power γk of ε in the eigen-
value expansion (3) among all perturbations E ∈ S, while αS > 0 is the largest possible
magnitude of αk in (3) for all E ∈ S with ‖E‖ ≤ 1.

As shown by example (7), it may happen that nS < n1, but in this paper we focus
on the cases when nS = n1. If so, then by Theorem 2.1 and Remark 2.2 we can write

(16) αS = sup
‖E‖≤1

E∈S

ρ(Y HEX).

Note that the right-hand side in this expression becomes zero if and only if nS < n1.
It turns out that the presence of the spectral radius in (16) considerably compli-

cates the task of finding explicit formulas or reasonable bounds for αS. However, we
will see that it is often possible to identify structures with αS ≈ α by constructing a
perturbation E ∈ S for which ρ(Y HEX) is close to α.

3.1. Real matrices. As a first example, we point out that restricting the per-
turbation to be real can, at best, mildly improve the sensitivity of λ. This has been
shown for a simple eigenvalue λ in [3]. The following lemma is a generalization to
multiple eigenvalues.

Lemma 3.2. Let A ∈ Cn×n. We have κ(A, λ; Rn×n) = (n1, αR) with
(i) α/2 ≤ αR ≤ α in any unitarily invariant norm ‖ · ‖;
(ii) and αR = α in the matrix 2-norm, ‖ · ‖ ≡ ‖ · ‖2, provided that A is a normal

matrix.
Proof. Decomposing XY H = MR + ıMI with MR,MI ∈ Rn×n gives ‖MR‖2 ≥

‖XY H‖2/2 or ‖MI‖2 ≥ ‖XY H‖2/2. Without loss of generality, we may assume
‖MR‖2 ≥ ‖XY H‖2/2. Let us consider the perturbation E = v1u

T
1 ∈ R

n×n, where u1

and v1 are normalized left and right singular vectors belonging to the largest singular
value of MR. Then ‖E‖ = 1 and

ρ(EXY H) = ρ(v1uT1 (MR + ıMI)) = |uT1 (MR + ıMI)v1|
≥ |uT1MRv1| = ‖MR‖2 ≥ ‖XY H‖2/2,

which proves αR ≥ α/2. To show the second part, note that we can choose Y = X if
A is normal and thus E = I ∈ Rn×n gives ρ(EXXH) = α = αR.

Remark 3.3. In the case r1 = 1 (one single Jordan block of largest size n1), we
can use the same arguments as in [3] to improve the lower bound of Lemma 3.2(i)
to α/

√
2 ≤ αR. It is not clear to us whether this slightly stronger result holds for

r1 > 1.
Suppose that S is a structure such that for any E ∈ S the real and imaginary parts

of E are both in S ∩ R
n×n. For a simple eigenvalue λ, Rump [32] has extended the

bounds of Lemma 3.2 to structured condition numbers in the sense that restricting
the perturbations from S to S ∩ Rn×n improves the condition number by at most a
factor of 1/

√
2. By a trivial extension of [32, Lemma 3.1], this result holds for the

case r1 = 1, but it is difficult to show that a similarly general result holds for an
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eigenvalue having multiple Jordan blocks of largest size. The following lemma is only
a first step in this direction.

Lemma 3.4. Let SR be a subset of Rn×n, and let S = SR + ıSR be the set of all
matrices with real and imaginary parts in SR. If there is a rank one matrix E ∈ S

with ‖E‖ = 1 such that αS = ρ(Y HEX), then

αS/4 ≤ αSR ≤ αS

for both the Frobenius and the matrix 2-norm, ‖ · ‖ ∈ {‖ · ‖F , ‖ · ‖2}.
Proof. We can write E = vuH for u, v ∈ Cn×n with ‖u‖2 = ‖v‖2 = 1. Decompos-

ing u = uR + ıuI and v = vR + ıvI with uR, uI , vR, vI ∈ Rn gives

αS = |uHXY Hv| = |(uTRXY HvR + uTI XY
HvI)− ı(uTI XY HvR − uTRXY HvI)|.

At least one of the two bracketed terms in this sum is not smaller than αS/2 in mag-
nitude. Suppose |uTRXY HvR+uTI XY

HvI | ≥ αS/2 and set U = [uR, uI ], V = [vR, vI ].
Then |trace(UTXY HV )| ≥ αS/2, implying ρ(UTXY HV ) ≥ αS/4. Thus, the real per-
turbation ER = V UT (which is the real part of E) yields αSR ≥ ρ(ERXY H) ≥
αS/4 while ‖ER‖2 ≤ 1 and ‖ER‖F ≤ 1, which completes the proof. The case
|uTI XY HvR − uTRXY HvI | ≥ αS/2 is treated analogously.

3.2. General linear structures. Let us briefly investigate the rather general
case that S is a linear matrix space in F

n×n with F ∈ {R,C}. Using an approach
developed by Higham and Higham [9], we consider a fixed basis {M1, . . . ,Ml} of S that
is orthonormal with respect to the matrix inner product. Then for each perturbation
E ∈ S there is a unique vector p = [p1, . . . , pl]T ∈ Fl so that E = p1M1 + · · ·+ plMl

and ‖E‖F = ‖p‖2. If nS = n1, the structured condition number κ(A, λ; S) = (n1, αS)
satisfies

(17) αS = sup
‖p‖2≤1

p∈Fl

ρ
(
p1Y

HM1X + · · ·+ plY
HMlX

)

for the Frobenius norm ‖ · ‖ ≡ ‖ · ‖F . Maximizing a nonsymmetric spectral function
is known to be a nontrivial optimization problem; see, e.g., [2]. We therefore see little
hope in finding an explicit expression for αS in general. There are two special cases
for which αS can be (nearly) determined.

1. The case r1 = 1 (X and Y are vectors) can be treated the same way as the
case of simple eigenvalues [9, 40]. Defining the pattern matrix

(18) M = [vec(M1), . . . , vec(Ml)],

where vec stacks the columns of a matrix into a long vector, we can write
vec(E) =Mp, and therefore

αS = sup
‖p‖2≤1

p∈Fl

|p1Y
HM1X + · · ·+ plY

HMlX | = ‖(XT ⊗ Y H)M‖2

when F = C, or when F = R and X,Y ∈ Rn. For F = R and X,Y �∈ Rn,
we can show as in [16, section 2] that ‖(XT ⊗ Y H)M‖2/

√
2 ≤ αS ≤ ‖(XT ⊗

Y H)M‖2.
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2. If F = C and all matrices Nj = Y HMjX are Hermitian, then

αS = sup
‖p‖2≤1

p∈Cl

‖p1N1 + · · ·+ plNl‖2

= sup
‖x‖2=1
x∈Cn

‖[xHN1x, . . . , x
HNlx]‖2.

It follows that

max
i
‖Ni‖2 ≤ αS ≤

√
lmax

i
‖Ni‖2.

3.3. Toeplitz and Hankel matrices. In [32], it is proven that the structured
pseudospectrum of a matrix A ∈ S coincides with the unstructured pseudospectrum
for the following complex structures S: symmetric, persymmetric, Toeplitz, symmetric
Toeplitz, Hankel, persymmetric Hankel, and circulant. This implies, in particular,
that κ(A, λ; S) = κ(A, λ) for all these structures. Hence, some of the results that
follow could be stated without proof. However, the proofs provided here explicitly
construct structured perturbations that attain κ(A, λ), which might lead to additional
insight.

A Toeplitz matrix takes the form

T =

⎡
⎢⎢⎢⎢⎣

t0 t−1 . . . t−n+1

t1 t0
. . .

...
...

. . . . . . t−1

tn−1 . . . t1 t0

⎤
⎥⎥⎥⎥⎦ ∈ C

n×n

and H ∈ Cn×n is a Hankel matrix if FnH is Toeplitz, where Fn is the n × n flip
matrix with ones on the antidiagonal and zeros everywhere else.

Theorem 3.5. Let T and SY denote the sets of Toeplitz and complex symmetric
matrices, respectively. Then the following statements hold in the matrix 2-norm:

(i) κ(A, λ; T) = κ(A, λ) = (n1, ‖XXT‖2) for A ∈ T;
(ii) κ(A, λ; T ∩ SY) = κ(A, λ) = (n1, ‖XXT‖2) for A ∈ T ∩ SY;
(iii) κ(A, λ; T ∩ Rn×n) = κ(A, λ) = (n1, ‖XXT‖2) for A ∈ T ∩Rn×n and λ ∈ R;
(iv) κ(A, λ; T ∩ SY ∩ Rn×n) = κ(A, λ) = (1, 1) for A ∈ T ∩ SY ∩ Rn×n.
Proof. A Toeplitz matrix is complex persymmetric, meaning that FnT is complex

symmetric. We can therefore apply Corollary A.2(i) to conclude Y = FnX. A Takagi
factorization [13, section 4.4] of the complex symmetric matrix XXT is a special
singular value decomposition XXT = UΣUT , where U ∈ Cn×r1 has orthonormal
columns and Σ = diag(σ1, . . . , σr1) with σ1 ≥ · · · ≥ σr1 > 0. By [31, Lemma 10.1],
there is a Hankel matrix H with ‖H‖2 = 1 and Hu1 = ū1, where u1 denotes the
first column of U . Setting E = FnH ∈ T gives ‖E‖2 = 1 with Eu1 = Fnū1, which
completes the proof of (i) by Lemma 2.6.

A symmetric Toeplitz matrix is persymmetric and symmetric; it can thus be block
diagonalized by a simple orthogonal transformation:

GTAG =
[
A11 0
0 A22

]
,

where A11 ∈ R�n/2�×�n/2�, A22 ∈ R�n/2�×�n/2� are complex symmetric and

G =
1√
2

[
I Fn/2

−Fn/2 I

]
(even n), G =

1√
2

⎡
⎣ I 0 F(n−1)/2

0
√

2 0
−F(n−1)/2 0 I

⎤
⎦ (odd n).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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This folklore result, which can be found, for example, in [44], shows that X = [X1, X2]
with X1 = −FnX1 and X2 = FnX2. The eigenvectors contained in X1 and X2 stem
from Jordan blocks in A11 and A22, respectively. Moreover, Y = Fn[X1, X2] and

αT∩SY = sup
‖E‖2=1
E∈T∩SY

max
(
ρ(EX1X

T
1 Fn), ρ(EX2X

T
2 Fn)

)

= sup
‖E‖2=1
E∈T∩SY

max
(
ρ(EX1X

T
1 ), ρ(EX2X

T
2 )
)
.

From XH
2 X1 = XH

2 FnFnX1 = −XH
2 X1 it follows that XH

2 X1 = 0 and hence

‖XXT‖2 = ‖[X1, X2][X1, X2]T ‖2 = max(‖X1X
T
1 ‖2, ‖X2X

T
2 ‖2).

Let us assume ‖X1X
T
1 ‖2 ≥ ‖X2X

T
2 ‖2 (the other case is treated analogously), and let

X1X
T
1 = UΣUT be a Takagi factorization. Then U = −FnU and by [32, Lemma 2.4]

there is a symmetric Toeplitz matrix E such that ‖E‖2 = 1 and Eu1 = u1. The proof
of (ii) is completed by applying Lemma 2.6.

Parts (iii) and (iv) are shown by noting that λ ∈ R implies X ∈ Rn×r1 and hence
the perturbations constructed above can be chosen to be real [32].

Theorem 3.5 can be easily extended to Hankel matrices.
Corollary 3.6. Let HA and PS denote the sets of Hankel and persymmetric

matrices, respectively. Then the following statements hold in the matrix 2-norm:
(i) κ(A, λ; HA) = κ(A, λ) = (n1, ‖XXT‖2) for A ∈ HA;
(ii) κ(A, λ; HA ∩ PS) = κ(A, λ) = (n1, ‖XXT‖2) for A ∈ HA ∩ PS;
(iii) κ(A, λ; HA ∩Rn×n) = κ(A, λ) = (1, 1) for A ∈ HA ∩Rn×n;
(iv) κ(A, λ; HA ∩ PS ∩Rn×n) = κ(A, λ) = (1, 1) for A ∈ HA ∩ PS ∩ Rn×n.
Proof. A Hankel matrix is complex symmetric, which implies Y = X by Corol-

lary A.2(i). The rest of the proof is along the lines of the proof of Theorem 3.5 and
is therefore omitted.

3.4. Symmetric, skew-symmetric, and Hermitian matrices. The con-
struction used in the proof of Theorem 3.5 exploits only the persymmetry of Toeplitz
matrices, and it can thus also be used to show κ(A, λ; PS) = κ(A, λ) for A ∈ PS. More
generally, we have the following result, which besides persymmetric (M = Fn) also
includes symmetric (M = I) and pseudosymmetric (M = diag(I,−I)) matrices.

Theorem 3.7. Let M ∈ Rn×n be an orthogonal symmetric matrix and define
S = {A ∈ Cn×n : ATM = MA}. Then the following statements hold for A ∈ S in
any unitarily invariant norm:

(i) κ(A, λ; S) = κ(A, λ) = (n1, ‖XXT‖2);
(ii) κ(A, λ; S ∩ Rn×n) = (n1, αS∩Rn×n) with ‖XXT‖2/2 ≤ αS∩Rn×n ≤ ‖XXT‖2.
Proof. Corollary A.2(i) gives Y = MX. Let XXT = UΣUT be a Takagi factor-

ization; then we set u1 = Ue1 and E = Mu1u
H
1 to obtain ‖E‖ = 1 and

αS ≥ ρ(EXXTM) = ρ(Mu1u
H
1 XX

TM) = ρ(uH1 XX
Tu1) = ‖XXT‖2 = α.

This completes the proof of the first part. The proof of the second part is virtually
identical with the proof of Lemma 3.2(i).

Using the terminology of [16], Theorem 3.7 is concerned with Jordan algebras
associated with the symmetric bilinear form 〈x, y〉 = xTMy. For the corresponding
Lie algebras, which are given by S = {A ∈ Cn×n : ATM = −MA}, it is known
that the structured and unstructured condition numbers for simple eigenvalues may
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widely differ [16, 32]. We have already shown in the introduction a skew-symmetric
matrix (7) (corresponding to M = I) such that nS < n1. This shows that multiple
eigenvalues can have a qualitatively better behavior under structured perturbations.
The following theorem identifies one such situation and proves that, in this setting,
it can happen only under very specific conditions (namely, for zero eigenvalues with
one single Jordan block of largest odd size). Additionally, Theorem 3.8 provides some
insight on the expected difference between αS and α whenever nS = n1.

Theorem 3.8. Let M ∈ Rn×n be an orthogonal symmetric matrix and define
S = {A ∈ Cn×n : ATM = −MA}. Then the following statements on κ(A, λ; S) =
(nS, αS) hold for A ∈ S in the matrix 2-norm:

(i) if λ = 0, n1 is odd, and r1 = 1, then nS < n1;
(ii) if λ = 0, n1 is odd, and r1 > 1, then nS = n1 and αS =

√
σ1σ2, where σ1, σ2

are the two largest singular values of XXT (whereas α = σ1);
(iii) if λ = 0 and n1 is even, then r1 is even, nS = n1, and

αS = α =
∥∥∥∥X

[
0

Ir1/2

−Ir1/2

0

]
XT

∥∥∥∥
2

;

(iv) if λ �= 0 and r1 = 1, then nS = n1 and αS =
√‖X‖22‖Y ‖22 − |Y TMX |2;

(v) if λ �= 0 and r1 > 1, then nS = n1.
Proof. For λ = 0 with n1 odd, Corollary A.4(i)(a) implies Y = MX. Now, if nS

was equal to n1, then there would exist some E ∈ S with ρ(Y HEX) = ρ(XTMEX) >
0. This is impossible for r1 = 1, since X is a vector and ME is skew-symmetric, so
ρ(XTMEX) = |XTMEX | = 0. This shows (i).

To show nS = n1 for λ = 0 when n1 is odd and r1 > 1, it is sufficient to
construct a perturbation E ∈ S such that ρ(XTMEX) > 0. For this purpose,
consider a Takagi factorization XXT = UΣUT , where U = [u1, . . . , ur1 ] has or-
thonormal columns and Σ = diag(σ1, . . . , σr1) with σ1 ≥ · · · ≥ σr1 > 0. Setting
E = M [u1, u2]

[
0
1

−1
0

]
[u1, u2]H gives E ∈ S, ‖E‖2 = 1, and

αS ≥ ρ(XTMEX) = ρ

([
0 σ2

−σ1 0

])
=
√
σ1σ2 > 0.

On the other hand, letting SK denote the set of complex skew-symmetric matrices,
we have

αS = sup
‖Ẽ‖2≤1

Ẽ∈SK

ρ(ẼXXT ) = sup
‖G‖2≤1

G∈SK

ρ(GΣ) = sup
‖G‖2≤1

G∈SK

ρ(Σ1/2GΣ1/2)

≤ sup
‖G‖2≤1

G∈SK

‖Σ1/2GΣ1/2‖2 = sup
‖G‖2≤1

G∈SK

‖Σ̃ ◦G‖2,

where Σ̃ = [√σiσj ]r1i,j=1 and ◦ denotes the Hadamard product. A result by Math-
ias [24, Corollary 2.6] implies ‖Σ̃ ◦ G‖2 ≤ √σ1σ2‖G‖2, which concludes the proof of
(ii).

For λ = 0 with n1 odd, Corollary A.4(i)(b) implies Y = MX[ 0
−Ir1/2

Ir1/2
0

]. To

attain ρ(Y HEX) = α = |X [ 0
Ir1/2

−Ir1/2
0

]XT |2 we may just use a perturbation of the

form (15), which in this case turns out to be E = 1
αMX[ 0

Ir1/2

−Ir1/2
0

]XH ∈ S. This
proves (iii).
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If λ �= 0, then −λ is also an eigenvalue with the same Jordan structure as λ. If
we let X̃, Ỹ denote the matrices of right/left eigenvectors stemming from the n1×n1

Jordan blocks belonging to −λ, then Corollary A.4(i)(c) yields X̃ = −MY and Ỹ =
MX. This implies not only κ(A,−λ) = κ(A, λ) as well as κ(A,−λ; S) = κ(A, λ; S)
but also that [X,MY ] has full column rank. If r1 = 1, then X,Y are vectors and we
have

|Y HEX | = ρ
(
[MY ,X ]TME[MY ,X ]

)
= ρ

(
ME[MY ,X ][MY ,X ]T

)
for any E ∈ S. Hence, using the arguments from the proof of (ii), we have αS =√
σ1σ2, where σ1 and σ2 are the two largest singular values of the symmetric matrix

[MY ,X ][MY ,X ]T . This shows (iv) since

σ1σ2 =
√

det
(
[MY ,X ][MY ,X ]T [MY,X][MY,X]T

)
=
√

det
(
[MY,X]T [MY ,X ][MY ,X ]T [MY,X]

)
=
∣∣det

(
[MY,X]T [MY ,X ]

)∣∣
= ‖X‖22‖Y ‖22 − |Y TMX |2.

Unfortunately, the technique of this proof does not extend to the case r1 > 1.
Still, we can show αS > 0, but it is not clear how to obtain a good lower or upper
bound on αS. The full column rank of [X,MY ] implies the existence of an invertible
matrix L such that

L−1[X,MY ] =

⎡
⎣ Ir1 �

0 Ir1
0 0

⎤
⎦ .

Setting

E = ML−T

⎡
⎣ 0 Ir1 0
−Ir1 0 0

0 0 0

⎤
⎦L−1 ∈ S

yields ρ(Y HEX) = ρ(Ir) = 1 and thus αS > 0, completing the proof of (v).
Remark 3.9. Note that Theorem 3.8(iv) also improves the results in [16, Theorem

4.3] and [32, Theorem 3.2], which state only bounds but no explicit formula for the
structured condition number of a simple nonzero eigenvalue. Recently, Karow [15]
described the limit sets of the structured pseudospectra for complex skew-symmetric
matrices, from which Theorem 3.8(iv) could also be derived.

Fortunately, the matter of structured condition numbers is much less complicated
for Jordan and Lie algebras associated with a sesquilinear form 〈x, y〉 = xHMy.

Lemma 3.10. Let M ∈ Rn×n be an orthogonal symmetric or orthogonal skew-
symmetric matrix and define S = {A ∈ Cn×n : AHM = γMA} for a fixed γ ∈
{1,−1}. Then for any A ∈ Cn×n, κ(A, λ; S) = κ(A, λ) holds in the matrix 2-norm.

Proof. Let XY H = UΣV H be a singular value decomposition and set u1 = Ue1,
v1 = V e1. Then ‖u1‖2 = ‖v1‖2 = 1 and by [22, Theorem 8.6] we can find a Hermitian
matrix H such that ‖H‖2 = 1 and Hu1 = μMv1 for some μ ∈ C with |μ| = 1.
Set E =

√
γMH if M = MT , and E =

√−γMH if M = −MT . Then E ∈ S

satisfies ‖E‖2 = 1 and Eu1 = βv1 for some |β| = 1, which implies the result by
Lemma 2.6.
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3.5. J-symmetric and J-skew-symmetric matrices. For M = J2n =
[ 0
−In

In

0 ], the structure S = {A ∈ C2n×2n : AHM = γMA} considered in Lemma 3.10
coincides with the set of complex skew-Hamiltonian matrices if γ = 1, and with the set
of complex Hamiltonian matrices if γ = −1. The following two theorems provide re-
sults for the closely related structures S = {A ∈ C

2n×2n : ATJ2n = γJ2nA}, including
bounds on structured condition numbers for real skew-Hamiltonian and Hamiltonian
matrices.

Theorem 3.11. Let M ∈ R2n×2n be an orthogonal skew-symmetric matrix and
define S = {A ∈ C2n×2n : ATM = MA}. Then the following statements hold for
A ∈ S in the matrix 2-norm:

(i) κ(A, λ; S) = κ(A, λ) = (n1, ‖XJr1XT‖2);
(ii) κ(A, λ; S ∩ R2n×2n) = (n1, αS∩R2n×2n) with ‖XJr1XT ‖2/4 ≤ αS∩R2n×2n ≤
‖XJr1XT ‖2.

Proof. Corollary A.6 reveals the relation Y = −MXJr1 . Using a perturbation as
in (15), namely E = (MTXJr1X

H)/‖XJr1XT ‖2, yields E ∈ S with ‖E‖2 = 1 and

αS ≥ ρ(JTr1XTMEX)/‖XJr1XT‖2 = ‖XJr1XT ‖2 = α.

To prove the second part, let u = uR+ ıuI and v = vR+ ıvI , with uR, uI , vR, vI ∈
Rn and ‖u‖2 = ‖v‖2 = 1, be left/right singular vectors corresponding to the largest
singular value of K = XJr1X

T . Then

αS = ‖K‖2 = uHKv = (uTRKvR + uTI KvI) + ı(uTRKvI − uTI KvR).

At least one of the four terms in this sum is not smaller in magnitude than αS/4.
Choose this term and let the columns of W = [w1, w2] ∈ R2n×2 contain the two
vectors corresponding to it. For example, if |uTRKvR| ≥ αS/4, then W = [uR, vR]. By
the skew-symmetry of K, we may assume that u and v satisfy vTu = 0, which implies
‖W‖2 ≤ 1. Setting E = MTWJ2W

T ∈ S ∩R2n×2n yields ‖E‖2 ≤ 1 and

αS∩R2n×2n ≥ ρ(JTr1XTMEX) = ρ(JTr1X
TWJ2W

TX)

= ρ(KWJ2W
T ) = ρ(J2W

TKW )
= ρ(diag(wT2 Kw1,−wT1 Kw2)) ≥ αS/4,

where we used the fact that wT1 Kw1 = wT2 Kw2 = 0 due to the skew-symmetry of
K.

Theorem 3.12. Let M ∈ R2n×2n be an orthogonal skew-symmetric matrix and
define S = {A ∈ C2n×2n : ATM = −MA}. Then the following statements hold for
any A ∈ Cn×n:

(i) κ(A, λ; S) = (n1, αS) with α/
√

2 ≤ αS ≤ α in the Frobenius norm and αS = α
in the matrix 2-norm;

(ii) κ(A, λ; S ∩ R2n×2n) = (n1, αS∩R2n×2n) with α/8 ≤ αS∩R2n×2n ≤ αS in the
matrix 2-norm.

Proof. Let u1, v1 with ‖u1‖2 = ‖v1‖2 = 1 be the left/right singular vectors belong-
ing to the largest singular value of XY HM and define Ẽ = [v1, u1][01

1
−vT

1 u1
][v1, u1]T .

Then Ẽ is symmetric and one can show that ‖Ẽ‖F =
√

2− |uT1 v1|2 ≤
√

2; see also [23,
Theorem 5.6]. Setting E = MẼ/

√
2, we obtain E ∈ S and

αS ≥ ρ(Y HEX) = ρ(ẼXY HM)/
√

2 ≥ ‖XY H‖2/
√

2,
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where we applied Lemma 2.6, using the fact that Ẽ maps u1 to v1. In the matrix
2-norm, Theorem 5.7 in [23] implies the existence of a symmetric matrix Ẽ which
maps u1 to v1 and satisfies ‖Ẽ‖2 = 1. Thus, setting E = MẼ shows the second part
of (i).

To show (ii), let us decompose XY HM = S + W , where S = (XY H + Y XT )/2
and W = (XY H−Y XT )/2. Then α = ‖XY H‖2 ≤ ‖S‖2 +‖W‖2. We distinguish two
cases, depending on whether the skew-symmetric part W dominates the symmetric
part S.

1. ‖S‖2 ≥ ‖W‖2/3: Decompose S = SR + ıSI with real symmetric matrices
SR, SI . Then ‖SR‖2 ≥ ‖S‖2/2 or ‖SI‖2 ≥ ‖S‖2/2. In the first case, let u1 be
a normalized eigenvector belonging to an eigenvalue of SR that has magnitude
‖SR‖2. Then E = Mu1u

T
1 ∈ S ∩ R2n×2n with ‖E‖2 = 1 and

αS∩Rn×n ≥ ρ(EXY H) = |uT1XY HMu1| = |uT1 Su1| ≥ |uT1 SRu1|
≥ ‖S‖2

2
=
‖S‖2 + 3‖S‖2

8
≥ ‖S‖2 + ‖W‖2

8
≥ α

8
.

The case ‖SI‖2 ≥ ‖S‖2/2 can be shown analogously.
2. ‖S‖2 ≤ ‖W‖2/3: Decompose W = WR + ıWI with real skew-symmetric

matrices WR,WI . Suppose that ‖WR‖2 ≥ ‖W‖2/2 (once again, the case
‖WI‖2 ≥ ‖W‖2/2 is treated in an analogous manner). Let u1, v1 with ‖u1‖2 =
‖v1‖2 = 1 be left/right singular vectors belonging to the largest singular value
of WR. Since WR is skew-symmetric, we have vT1 u1 = 0. Setting

E = M [u1, v1]
[

0 1
1 0

]
[u1, v1]T ∈ S ∩ R

2n×2n

yields ‖E‖2 = 1 and

αS∩R2n×2n ≥ ρ(EXY H) = ρ

([
0 1
1 0

]
[u1, v1]T (S +W )[u1, v1]

)
= ρ(Φ),

where

Φ =
[ −β 0

0 β

]
+
[
uT1 Sv1 vT1 Sv1
uT1 Su1 uT1 Sv1

]

with β = ‖WR‖2 + ıuT1WIv1. We have det(Φ) = −(β + γ)(β − γ) with

γ =
√

(uT1 Su1)(vT1 Sv1)− (uT1 Sv1)2

satisfying |γ| ≤ ‖S‖2. This shows

ρ(Φ) ≥ |β| − |γ| ≥ ‖WR‖2 − ‖S‖2 ≥ ‖W‖22
− ‖S‖2

=
‖W‖2

2
− 9

8
‖S‖2 +

1
8
‖S‖2 ≥ ‖S‖2 + ‖W‖2

8
≥ α

8
,

which concludes the proof.
Theorem 3.12(ii) reveals that forcing the perturbations in a real Hamiltonian ma-

trix to respect the structure will generally have only a mild positive effect on the
accuracy of multiple eigenvalues. However, it should be emphasized that condition
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numbers provide little insight on the direction in which perturbed eigenvalues are
likely to move, an issue which is crucial in deciding whether a purely imaginary eigen-
value of a Hamiltonian matrix stays on the imaginary axis or not under (structured)
perturbations, something which is often important in applications. For results in this
direction, see [1, 26] and the references therein.

4. Generalized eigenvalue problems.

4.1. Matrix pencils. Langer and Najman [17, 18, 19] extended Lidskii’s per-
turbation theory, obtaining eigenvalue perturbation expansions for analytic matrix
functions L(λ). They used the local Smith form of L(λ) in much the same way as
the Jordan canonical form was used by Lidskii for matrices. In a recent paper, de
Terán, Dopico, and Moro [6] have investigated the special case L(λ) = A − λB, re-
lating the results by Langer and Najman to the Kronecker–Weierstraß form, which
is a more natural canonical form when L(λ) is a matrix pencil. Let us briefly recall
these results, restricting our attention to regular matrix pencils (A and B are square,
det(L(λ)) �≡ 0).

In the following, we denote the regular matrix pencil A − λB by (A,B). For a
finite eigenvalue λ of (A,B), the Kronecker–Weierstraß form implies

(19)

[
J 0

0 J̃A

]
=

[
Q

Q̃

]
A
[
P P̃

]
,

[
I 0

0 J̃B

]
=

[
Q

Q̃

]
B
[
P P̃

]
,

where [P, P̃ ], [Q
Q̃

] are invertible and J contains all r1 Jordan blocks of largest size n1;
see also (10). Similarly for an infinite eigenvalue of (A,B), we have

(20)

[
I 0

0 J̃A

]
=

[
Q

Q̃

]
A
[
P P̃

]
,

[
N 0

0 J̃B

]
=

[
Q

Q̃

]
B
[
P P̃

]
,

where N contains all r1 nilpotent blocks of largest nilpotency index n1. As for the
standard eigenvalue problem, we collect the (generalized) right and left eigenvectors
contained in P and Q:

(21)
X =

[
Pe1, P en1+1, . . . , P e(r1−1)n1+1

]
,

Y =
[
QHen1 , Q

He2n1 , . . . , Q
Her1n1

]
.

As in the standard eigenvalue problem, this relationship between X,Y and P,Q im-
poses some normalization on X,Y . For n1 = 1, we have Y HBX = I if λ is finite and
Y HAX = I if λ is infinite. For n1 > 1, we have Y HAX = Y HBX = 0.

The following theorem summarizes results from [6].
Theorem 4.1. Let λ be a finite eigenvalue of a regular matrix pencil (A,B), and

let (E,F ) ∈ Cn×n × Cn×n be such that Y H(E − λF )X is invertible, where X and
Y are defined as in (21). Then there are n1r1 eigenvalues λ̂k of the perturbed pencil
(A+ εE,B + εF ) admitting a perturbation expansion

(22) λ̂k = λ+ (ξk)1/n1ε1/n1 + o(ε1/n1), k = 1, . . . , r1,

where ξ1, . . . , ξr1 are the eigenvalues of Y H(E − λF )X. For an infinite eigenvalue
of (A,B), let F ∈ Cn×n be such that Y HFX is invertible. Then there are n1r1
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eigenvalues λ̂k of the perturbed pencil (A + εE,B + εF ) admitting a perturbation
expansion

(23)
1
λ̂k

= (ξk)1/n1ε1/n1 + o(ε1/n1), k = 1, . . . , r1,

where ξk are the eigenvalues of Y HFX.

4.1.1. Hölder condition numbers for multiple eigenvalues of matrix
pencils. Throughout the rest of this section, λ denotes a finite or infinite eigenvalue
of a regular matrix pencil (A,B) with the matrices X and Y defined as in (21).

Based on Theorem 4.1, we can define a condition number for a multiple eigenvalue
of a matrix pencil as follows.

Definition 4.2. The (absolute) Hölder condition number for a finite eigenvalue
λ is given by κ(A,B, λ) = (n1, α), where n1 is the dimension of the largest Jordan
block associated with λ and

α = sup
||E||≤wA,||F ||≤wB

E,F∈C
n×n

ρ(Y H(E − λF )X).

The (absolute) Hölder condition number for λ =∞ is given by κ(A,B,∞) = (n1, α),
where n1 is the nilpotency index of (A,B) and

α = sup
||F ||≤wB

F∈C
n×n

ρ(Y HFX).

Remark 4.3. Note that Definition 4.2 depends not only on the employed matrix
norm ‖ · ‖ but also on the choice of nonnegative weights wA and wB . It is implicitly
assumed that wA or wB is strictly larger than zero; otherwise κ(A,B, λ) = (0, 0). More
specifically, we require wA > 0 for λ = 0, wB > 0 for λ = ∞, and max{wA, wB} > 0
for any other eigenvalue.

The role of the weights wA and wB is to balance the influence of perturbations
on A and B. For example, if each of the perturbations E and F is known to be
small compared to the norm of A and B, respectively, then it is reasonable to set
wA = ‖A‖/√‖A‖2 + ‖B‖2 and wB = ‖B‖/√‖A‖2 + ‖B‖2.

The following lemma represents a direct extension of [27, Theorem 4.2].
Lemma 4.4. For any unitarily invariant norm, we have

κ(A,B, λ) = (n1, (wA + wB |λ|)‖XY H‖2)
if λ is a finite eigenvalue, and κ(A,B, λ) = (n1, wB‖XY H‖) if λ =∞.

Proof. On the one hand,

ρ(Y H(E − λF )X) = ρ((E − λF )XY H) ≤ ‖(E − λF )XY H‖2
≤ ‖(E − λF )XY H‖ ≤ (wA + wB |λ|)‖XY H‖2

holds for anyE,F satisfying ‖E‖ ≤ wA, ‖F‖ ≤ wB . Hence, α ≤ (wA+wB|λ|)‖XY H‖2.
On the other hand, let u1, v1 with ‖u1‖2 = ‖v1‖2 = 1 be the left/right singular vec-
tors belonging to the largest singular value of XY H . Setting E = wAv1u

H
1 and

F = − λ̄
|λ|wBv1u

H
1 (F = 0 if λ = 0) yields ‖E‖ ≤ wA, ‖F‖ ≤ wB , and

α ≥ ρ((wA+wB|λ|)v1uH1 XY H) = (wA+wB|λ|)ρ(uH1 XY Hv1) = (wA+wB|λ|)‖XY H‖2.
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The proof for κ(A,B,∞) is analogous.
Definition 4.2 is based on the distance |λ̂ − λ| between an eigenvalue λ and a

perturbed eigenvalue λ̂. This distance lacks mathematical elegance for generalized
eigenvalue problems, since infinite eigenvalues must be treated separately and |λ̂− λ|
is not invariant under an interchange of A and B, i.e., |λ̂− λ| �= |1/λ̂− 1/λ|. A more
elegant distance concept is offered by the chordal metric

χ(λ̂, λ) =
|λ̂− λ|√

|λ̂|2 + 1
√|λ|2 + 1

,

which naturally includes infinite eigenvalues

χ(λ̂,∞) = lim
|μ|→∞

χ(λ̂, μ) =
1√
|λ̂|2 + 1

;

see [34] for more details. Inserting the perturbation expansions (22) and (23) yields

χ(λ̂k, λ) =
|ξkε|1/n1

|λ|2 + 1
+ o(ε1/n1)

and

χ(λ̂k,∞) = |ξkε|1/n1 + o(ε1/n1),

respectively. This shows that when working in the chordal metric, the α-part in
the Hölder condition number for a finite eigenvalue needs to be divided by |λ|2 + 1
while the Hölder condition number for an infinite eigenvalue remains the same. It is
simple to see that this modified condition number has the pleasant property of being
continuous at |λ| =∞.

Whether |λ̂ − λ| or χ(λ̂, λ) is more appropriate depends on the application. If
the ultimate goal of a computation is a finite eigenvalue λ, it can be suspected that
|λ̂ − λ| is practically more relevant. All the following results employ |λ̂ − λ|, but
the discussion above reveals that it is rather easy to translate them into the chordal
metric setting.

4.1.2. Structured Hölder condition numbers for eigenvalues of matrix
pencils. The structured Hölder condition number κ(A,B, λ; S) = (nS, αS) for some
subset S ⊂ Cn×n×Cn×n can be defined in the same way as for the standard eigenvalue
problem. In particular, if nS = n1, then

αS = sup
||E||≤wA,||F ||≤wB

(E,F )∈S

ρ(Y H(E − λF )X).

Some proofs from section 3 can be rather directly extended to yield results on gen-
eralized eigenvalue problems if the structure is separable, i.e., S = S1 × S2 with
S1, S2 ⊂ Cn×n. The following theorem collects such results.

Theorem 4.5. Let κ(A,B, λ) = (n1, α) and κ(A,B, λ; S1×S2) = (nS1×S2 , αS1×S2).
(i) Real matrix pencils: If S1 = S2 = R

n×n, then nS1×S2 = n1 and α/4 ≤
αS1×S2 ≤ α hold for A,B ∈ Cn×n in any unitarily invariant norm.

(ii) Symmetric matrix pencils: If S1 = S2 = {A ∈ Cn×n : AT = A}, then
nS1×S2 = n1 and αS1×S2 = α hold for A,B ∈ S1 in any unitarily invariant
norm.
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(iii) Real symmetric matrix pencils: If S1 = S2 = {A ∈ Rn×n : AT = A},
then nS1×S2 = n1 and α/4 ≤ αS1×S2 ≤ α hold for A,B ∈ Cn×n with AT =
A, BT = B in any unitarily invariant norm.

(iv) Symmetric/skew-symmetric matrix pencils: If S1 = {A ∈ Cn×n : AT = A}
and S2 = {B ∈ C

n×n : BT = −B}, then the following statements hold for
(A,B) ∈ S1 × S2 in the matrix 2-norm:
(a) if λ =∞, n1 is odd, and r1 = 1, then nS < n1;
(b) if λ = ∞, n1 is odd, and r1 > 1, then nS = n1 and αS = wB

√
σ1σ2,

where σ1, σ2 are the two largest singular values of XXT (whereas α =
wBσ1);

(c) if λ =∞ and n1 is even, then r1 is even, nS = n1, and

αS = α = wB

∥∥∥∥X
[

0

Ir1/2

−Ir1/2

0

]
XT

∥∥∥∥
2

;

(d) if λ = 0 and n1 is even, then nS = n1 and αS = α = wA‖XXT‖2;
(e) if λ = 0 and n1 is odd, then r1 is even, nS = n1, and

αS = α = wA

∥∥∥∥X
[

0

Ir1/2

−Ir1/2

0

]
XT

∥∥∥∥
2

;

(f) if λ �=∞, λ �= 0, and r1 = 1, then nS = n1 and αS = wAα1 + wB |λ|α2,
where α1 = ‖X‖2‖Y ‖2 and α2 =

√‖X‖22‖Y ‖22 − |Y TX |2;
(g) if λ �=∞, λ �= 0, and r1 > 1, then nS = n1 and αS ≥ wA‖XY H‖2.

(v) Skew-symmetric matrix pencils: If S1 = S2 = {A ∈ C
n×n : AT = −A}, then

nS1×S2 = n1, r1 is even, and αS1×S2 = α for any A,B ∈ S1 in the matrix
2-norm.

(vi) Hermitian matrix pencils: Let Sj = {A ∈ Cn×n : AH = γjA} for j ∈ {1, 2}
and fixed γ1, γ2 ∈ {1,−1}. Then nS1×S2 = n1 and α/

√
2 ≤ αS1×S2 ≤ α hold

for any A,B ∈ Cn×n in the matrix 2-norm. If, additionally, γ1 = γ2 and
λ ∈ R, then αS1×S2 = α.

Proof. If not stated otherwise, it is tacitly assumed that λ is finite (the proofs
can be easily modified to cover λ =∞).

(i) As in the proof of Lemma 3.2, we can find a real matrix Ẽ with ‖Ẽ‖ ≤ 1
such that ρ(Y HẼX) ≥ ‖XY H‖2/2. We set E = wAẼ, F = 0 if wA ≥ wB|λ|, and
E = 0, F = wBẼ otherwise. Then

ρ(Y H(E − λF )X) ≥ wA + wB |λ|
2

ρ(Y HẼX) ≥ wA + wB |λ|
4

‖XY H‖2,

which proves (i).
(ii) and (iii) Corollary A.2(ii) implies Y = X, and hence assertions (ii) and (iii)

can be shown along the lines of the proof of Theorem 3.7.
(iv) For λ = ∞, the structured canonical form of a symmetric/skew-symmetric

pencil imposes the same structure on X and Y as for the zero eigenvalue of a skew-
symmetric matrix; see Corollary A.4. This implies that α/wB coincides with the
structured condition number for the zero eigenvalue of B, and hence (a)–(c) follow
from Theorem 3.8(i)–(iii).

For λ = 0 and n1 even, Corollary A.4(ii)(d) yields Y = X, so taking E =
wAXX

H/‖XXT‖2, F = 0 shows (d). If λ = 0 and n1 is odd, then r1 is even
and Y = X[ 0

−Ir1/2

Ir1/2
0

]; see Corollary A.4(ii)(c). Let u1, v1 be, respectively, left
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and right singular vectors corresponding to the largest singular value σ1 of the skew-
symmetric matrix XY H = X [ 0

Ir1/2

−Ir1/2
0

]XT . Then, the pencil E − λF with E =

wA[u1, v1]
[
0
1

1
0

]
[u1, v1]T and F = 0 is such that E ∈ S1, F ∈ S2, ‖E‖2 = wA, and

αS ≥ ρ
(
EX

[
0

Ir1/2

−Ir1/2

0

]
XT

)
= ρ(V HEUΣ) = ρ

([
wAσ1

0

0

∗

])
≥ wAσ1 = α,

where UΣV H stands for a singular value decomposition of X [ 0
Ir1/2

−Ir1/2
0

]XT , ∗ de-

notes a nonzero (r1 − 1) × (r1 − 1) matrix, and we have used that vT1 u1 = 0, since
X [ 0

Ir1/2

−Ir1/2
0

]XT is skew-symmetric. This proves (e).

For finite nonzero λ and r1 = 1, we have ρ(Y H(E − λF )X) = |Y H(E − λF )X |,
so

αS = sup
||E||≤wA,||F ||≤wB

(E,F )∈S

ρ(Y H(E−λF )X) ≤ wA sup
||E||≤1
E∈S1

ρ(Y HEX)+wB|λ| sup
||F ||≤1
F∈S2

ρ(Y HFX).

The supremum over E ∈ S1 is clearly bounded by α1, while the supremum over F ∈ S2

is equal to α2 by Theorem 3.8(iv). Thus αS ≤ wAα1 + wB|λ|α2. By [23, Theorem
5.7] there exists a matrix Ẽ ∈ S1 with ‖Ẽ‖2 = ‖Y ‖2/‖X‖2 such that ẼX = Y .
Hence, the symmetric matrix E1 = ‖X‖2

‖Y ‖2
Ẽ has unit 2-norm and attains the upper

bound α1. Let F2 ∈ S2 be a matrix with unit 2-norm attaining the maximal value
α2. Then we may choose γ1, γ2 ∈ C, |γ1| = |γ2| = 1 in such a way that the pair
(E,F ) = (γ1wAE1, γ2wBF2) ∈ S1×S2 satisfies ρ(Y H(E−λF )X) = wAα1 +wB|λ|α2.
This proves (f).

For finite nonzero λ and r1 > 1, recall that, according to the proof of Theorem
3.12, there is a symmetric matrix E1 with ‖E1‖2 = 1 and ρ(Y HE1X) ≥ ‖XY H‖2.
Thus, taking E = wAE1 and F = 0 leads to (g).

(v) For skew-symmetric/skew-symmetric pencils, Theorem A.5 shows that every
eigenvalue has r1 even. Furthermore, Corollary A.6(ii) reveals the relationship Y =
X[ 0

−Ir1/2

Ir1/2
0

]. Hence, if we set Ẽ = X [ 0
−Ir1/2

Ir1/2
0

]XH , the perturbation matrices

E = wA

‖Ẽ‖2
Ẽ, F = − wB

‖Ẽ‖2

λ
|λ| Ẽ are such that ‖E‖2 = wA, ‖F‖2 = wB, and

ρ(Y H(E − λF )X) = (wA + |λ|wB)
∥∥∥∥XT

[
0

Ir1/2

−Ir1/2

0

]
X

∥∥∥∥
2

= α.

(vi) As in the proof of Lemma 3.10, we can construct a Hermitian matrix Ẽ

such that ‖Ẽ‖2 = 1 and ρ(ẼXY H) = ‖XY H‖2. Let us choose δ ∈ {1,−1} such
that δ matches the sign of λR if γ1 = γ2 and the sign of −λI otherwise. Then
E = wA

√
γ1Ẽ ∈ S1 and F = −δwB√γ2Ẽ ∈ S2 yield

αS1×S2 ≥ ρ((E−λF )XY H) = |wA√γ1+δwB
√
γ2λ| ‖XY H‖2 ≥ wA + wB|λ|√

2
‖XY H‖2.

Note that the last inequality follows from the fact that

2|wA√γ1 + δwB
√
γ2λ|2 − (wA + wB|λ|)2 ≥ w2

A − 2wAwB |λ|+ w2
B|λ|2

= (wA − wB |λ|)2 ≥ 0.

If γ1 = γ2 = 1 and λ ∈ R, then |wA + δwBλ| = wA + wB |λ| and the factor 1/
√

2 can
be removed.
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STRUCTURE HÖLDER CONDITION NUMBERS FOR EIGENVALUES 193

Remark 4.6. For definite Hermitian matrix pencils, the result of Theorem 4.5(vi)
can be found in [35, 37] for semisimple λ and in [9] for simple λ.

Palindromic matrix pencils, which are addressed by the following theorem, provide
a practically relevant example for a structure that is not separable; see [12, 21] for more
details and applications. Without loss of generality, we may assume wA = wB = 1 in
this case, since B = AT .

Theorem 4.7. Let S = {(A,AT ) : A ∈ Cn×n} denote the set of palin-
dromic matrix pencils, and assume wA = wB = 1. Then the following statements
on κ(A,AT , λ; S) = (nS, αS) hold for A ∈ Cn×n in the matrix 2-norm:

(i) if λ = 1, n1 is odd, and r1 = 1, then nS < n1;
(ii) if λ = 1, n1 is odd, and r1 > 1, then nS = n1 and αS = 2

√
σ1σ2, where σ1, σ2

are the two largest singular values of XXT (whereas α = 2σ1);
(iii) if λ = 1 and n1 is even, then r1 is even, nS = n1, and

αS = α = 2
∥∥∥∥X

[
0

Ir1/2

−Ir1/2

0

]
XT

∥∥∥∥
2

;

(iv) if λ = −1 and n1 is odd, then r1 is even, nS = n1, and

αS = α = 2
∥∥∥∥X

[
0

Ir1/2

−Ir1/2

0

]
XT

∥∥∥∥
2

;

(v) if λ = −1 and n1 is even, then nS = n1 and αS = α = 2‖XXT‖2;
(vi) if λ �= ±1 is finite and r1 = 1, then nS = n1 and

1
2
(|1− λ|α1 + |1 + λ|α2) ≤ αS ≤ |1− λ|α1 + |1 + λ|α2,

where α1 = ‖X‖2‖Y ‖2 and α2 =
√‖X‖22‖Y ‖22 − |Y TX |2;

(vii) if λ �= ±1 is finite and r1 > 1, then nS = n1 and |1−λ|
1+|λ|α ≤ αS ≤ α;

(viii) if λ =∞, then nS = n1 and αS = α.
Proof. If λ is finite and nS = n1, then

αS = sup
‖E‖2≤1
E∈Cn×n

ρ(Y H(E − λET )X)

=
1
2

sup
‖E‖2≤1
E∈Cn×n

ρ
(
(1− λ)Y H(E + ET )X + (1 + λ)Y H(E − ET )X

)
.(24)

This relation indicates that the analysis of palindromic matrix pencils is closely tied
to the analysis of symmetric/skew-symmetric pencils. In fact, it has been shown [14,
30, 33] that the structured canonical form of a palindromic matrix pencil (A,AT )
can be extracted from the structured canonical form [38] of the symmetric/skew-
symmetric pencil (A + AT , A − AT ). In particular, the relation between X and Y
for an eigenvalue λ of (A,AT ) coincides with the relation between X and Y for the
eigenvalue −(1 + λ)/(1− λ) of (A+AT , A−AT ).

Consequently, if λ = 1 and n1 is odd, then Corollary A.4(ii)(a) implies Y = X.
If λ = 1 and n1 is even, then r1 is even and Y = X [ 0

−Ir1/2

Ir1/2
0

]. It follows from (24)
that

αS = sup
‖E‖2≤1
E∈Cn×n

ρ(Y H(E − ET )X) ≤ sup
‖E−ET ‖2≤2

E∈Cn×n

ρ(Y H(E − ET )X)

= 2 sup
‖G‖2≤1

G skew-symmetric

ρ(Y HGX).
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On the other hand,

2 sup
‖G‖2≤1

G skew-symmetric

ρ(Y HGX) = sup
‖G‖2≤1

G skew-symmetric

ρ(Y H(G−GT )X)

≤ sup
‖E‖2≤1
E∈Cn×n

ρ(Y H(E − ET )X) ≤ αS.

This shows that the structured Hölder condition number for λ = 1 of (A,AT ) es-
sentially coincides with the structured Hölder condition number for the eigenvalue
λ = 0 of the skew-symmetric matrix A−AT . In particular, Theorem 3.8(i)–(iii) yield
assertions (i)–(iii) of this theorem.

If λ = −1 and n1 is odd, then Corollary A.4(ii)(c) implies that r1 is even and
Y = X [ 0

−Ir1/2

Ir1/2
0

]. If λ = −1 and n1 is even, then Y = X. As above, it follows
from (24) that the situation in assertions (iv) and (v) is completely parallel to the
one in items (e) and (d), respectively, of Theorem 4.5(iv). Thus, an analogous choice
of symmetric E proves (iv) and (v).

For finite λ with r1 = 1 (X and Y are vectors), relation (24) implies

αS ≤ |1− λ| sup
‖E1‖2≤1

E1 is symmetric

|Y HE1X |+ |1 + λ| sup
‖E2‖2≤1

E2 is skew-symmetric

|Y HE2X |.

As shown in the proof of Theorem 4.5(iv)(f), the supremum over symmetric E1 is
equal to α1 and, according to Theorem 3.8(iv), the one over skew-symmetric E2 is
equal to α2. This shows αS ≤ |1 − λ|α1 + |1 + λ|α2. Now, let E1 be a symmetric
matrix with ‖E1‖2 ≤ 1 and |Y HE1X | = α1, and let E2 be a skew-symmetric matrix
with ‖E2‖2 ≤ 1 and |Y HE2X | = α2. Then, the matrix E = γ1E1+γ2E2 with suitable
scalars γ1, γ2 satisfying |γ1| = |γ2| = 1 gives |Y H(E − λE)X | = |1− λ|α1 + |1 + λ|α2

with ‖E‖2 ≤ 2, which yields

αS ≥ 1
2
(|1− λ|α1 + |1 + λ|α2)

and concludes the proof of (vi).
For assertion (vii) we recall that there is a symmetric matrix E such that ‖E‖2 = 1

and ρ(Y HEX) ≥ ‖XY H‖2; see the proof of Theorem 3.12. Thus

αS ≥ ρ(Y H(E − λET )X) = |1− λ| ρ(Y HEX) ≥ |1− λ| ‖XY H‖2.

This proves the assertion since α = (1 + |λ|) ‖XY H‖2.
Finally, (viii) is verified by observing that imposing palindromic structure does

not change the definition of α for an infinite eigenvalue.
Summarizing the statements of Theorem 4.7, one may conclude that the struc-

tured and unstructured (Hölder) condition numbers of a palindromic matrix pencil
may differ significantly only for eigenvalues close to 1.

4.2. Matrix polynomials. Some seemingly more general variants of the gen-
eralized eigenvalue problem, such as polynomial and product eigenvalue problems,
can be addressed with the concepts introduced above. We illustrate this point for a
matrix polynomial

P (λ) = λmAm + λm−1Am−1 + · · ·+ λA1 +A0, Ai ∈ C
n×n.
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Nonzero vectors x, y ∈ Cn×n are called, respectively, right and left eigenvectors be-
longing to an eigenvalue λ if P (λ)x = 0 and yHP (λ)x = 0, respectively. In the
following, we assume that P is regular, i.e., detP (·) �≡ 0. The mn×mn matrix pencil
(25)

A− λB =

⎡
⎢⎢⎢⎢⎢⎣

−Am−1 −Am−2 · · · −A1 −A0

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎦− λ

⎡
⎢⎢⎢⎢⎢⎣

Am 0 · · · 0 0
0 I · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 I

⎤
⎥⎥⎥⎥⎥⎦

is called the companion form of P and represents one of its most common lineariza-
tions. It is well known [7] that the eigenvalues of (A,B) coincide with those of P .

Because of this one-to-one relation between the eigenvalues, condition numbers
for the eigenvalues of P can be derived from structured eigenvalue condition numbers
for (A,B) if the structure admits perturbations only in the blocks A0, . . . , Am of
A − λB. A consequence of this restriction on the perturbations is that the resulting
eigenvalue condition numbers for the polynomial do not depend on the particular type
of linearization chosen. The described approach has the advantage that we can make
use of Theorem 4.5 and do not require more general concepts for matrix polynomials.

Following this approach, let us consider the perturbed matrix polynomial P+ε�P
with

�P (λ) = λmEm + λm−1Em−1 + · · ·+ λE1 + E0.

Equivalently, we can consider the correspondingly perturbed linearization (A+εE,B+
εF ), where

(26) E = −V [ Em−1 Em−2 · · · E1 E0

]
, F = V EmV

T ,

and V = [In, 0, . . . , 0]T . To measure the perturbations, we allow n nonnegative weights
w1, . . . , wn, each corresponding to a coefficient of the matrix polynomial. As in Re-
mark 4.3, to avoid degenerate situations we require w0 > 0 for λ = 0, wm > 0 for
λ =∞, and max{w0, . . . , wm} > 0 for any other eigenvalue.

Definition 4.8. Let λ be a finite eigenvalue of a matrix polynomial P with
the companion form (A,B) as in (25). Moreover, let X and Y be the corresponding
eigenvector matrices (21) of (A,B). Consider perturbations (E,F ) of the form (26),
which preserve the companion form. Then the (absolute) Hölder condition number
for λ is given by κ(P, λ) = (n1, α), where n1 is the size of the largest Jordan block of
(A,B) associated with λ and

α = sup
‖Ei‖≤wi
Ei∈Cn×n

ρ(Y H(E − λF )X).

The (absolute) Hölder condition number for ∞ is given by κ(P,∞) = (n1, α), where
n1 is the nilpotency index of (A,B) and

α = sup
‖Ei‖≤wi
Ei∈Cn×n

ρ(Y HFX).

The results in [11, Lemma 7.2] and [10, Lemma 3.7] show that x1 and y1 are right
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and left eigenvectors belonging to a finite eigenvalue λ of P if and only if

(27) x =

⎡
⎢⎢⎢⎣
λm−1x1

...
λx1

x1

⎤
⎥⎥⎥⎦ , y =

⎡
⎢⎢⎢⎣

y1
(λAm +Am−1)Hy1

...
(λm−1Am + λm−2Am−1 + · · ·+A1)Hy1

⎤
⎥⎥⎥⎦

are right and left eigenvectors of (A,B), respectively. For λ =∞, the eigenvectors of
(A,B) are given by x = [xH1 , 0, . . . , 0]H and y = [yH1 , 0, . . . , 0]H . This shows that the
matrices X and Y defined in (21), containing right and left eigenvectors belonging to
a finite (multiple) eigenvalue λ of (A,B), take the form

(28) X =

⎡
⎢⎢⎢⎣
λm−1X1

...
λX1

X1

⎤
⎥⎥⎥⎦ , Y =

⎡
⎢⎢⎢⎣

Y1

(λAm +Am−1)HY1

...
(λm−1Am + λm−2Am−1 + · · ·+A1)HY1

⎤
⎥⎥⎥⎦ ,

where X1 and Y1 are matrices of right and left eigenvectors of P . For an infinite
eigenvalue only the first blocks of X and Y are nonzero and equal to X1 and Y1,
respectively.

The following lemma provides an explicit formula for the Hölder condition number
and also shows α > 0 (under the mentioned conditions on the weights), which—strictly
speaking—is needed to justify Definition 4.8.

Lemma 4.9. For a finite eigenvalue λ, we have

κ(P, λ) = (n1, (wm|λ|m + wm−1|λ|m−1 + · · ·+ w0)‖X1Y
H
1 ‖2)

in any unitarily invariant norm ‖ · ‖, where X1 and Y1 are the eigenvector matrices
of P related to the eigenvector matrices X and Y of (A,B) as shown in (28). For an
infinite eigenvalue, κ(P, λ) = (n1, wm‖X1Y

H
1 ‖2).

Proof. The structure of the matrices E, F , X , and Y shown in (26) and (28)
implies

Y H(E − λF )X = −Y H1 (λmEm + λm−1Em−1 + · · ·+ E0)X1.

As in the proof of Lemma 4.4, this shows

(29) ρ(Y H(E − λF )X) ≤ (wm|λ|m + wm−1|λ|m−1 + · · ·+ w0)‖X1Y
H
1 ‖2.

Let u, v with ‖u‖2 = ‖v‖2 = 1 be the left/right singular vectors belonging to the
largest singular value of X1Y

H
1 . Then equality in (29) is attained for the perturbation

coefficients

E0 = w0vu
H , E1 = w1

λ̄

|λ|vu
H , . . . , Em = wm

λ̄m

|λ|m vu
H ,

with E1 = · · · = Em = 0 for λ = 0. This proves the result for finite λ. For an infinite
eigenvalue, the result follows analogously after observing Y HFX = Y H1 EmX1.

It should be emphasized thatX1 and Y1 cannot be chosen arbitrarily in Lemma 4.9;
the result depends on the normalization of the matrices X and Y imposed by (21).
To illustrate the effect of this normalization, let λ be a semisimple finite eigenvalue of
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P and suppose that X̃1 and Ỹ1 contain arbitrary bases of right and left eigenvectors
belonging to λ. If we let X̃ and Ỹ denote the corresponding bases for eigenvectors of
(A,B), then (28) implies

Ỹ HBX̃ = Ỹ H1 P ′(λ)X̃1.

Since λ is semisimple and finite, the matrix Ỹ H1 P ′(λ)X̃1 is invertible and

X1 = X̃1(Ỹ H1 P ′(λ)X̃1)−1, Y1 = Ỹ1

satisfy Y H1 P ′(λ)X1 = I, which amounts to the condition imposed by (21) for a
semisimple eigenvalue. By Lemma 4.9,

κ(P, λ) =
(
1, (wm|λ|m + wm−1|λ|m−1 + · · ·+ w0)

∥∥X̃1(Ỹ H1 P ′(λ)X̃1)−1Ỹ H1
∥∥

2

)
.

For r1 = 1, this formula coincides with a result by Tisseur [39, Theorem 5] on the
condition number for a simple eigenvalue of a matrix polynomial.

Finally, let us emphasize again that the companion form linearization serves a
purely theoretical purpose here. If one admits general, unstructured perturbations
to the linearization, then the corresponding condition numbers do depend on the lin-
earization; see the discussion in [10, 11]. In particular, [11] shows how to minimize the
unstructured condition number for a simple eigenvalue of the linearization. This is
useful when applying an unstructured method, such as the QZ algorithm, to compute
the eigenvalue via the linearization. The extension of these results to multiple eigen-
values would require comparing the result of Lemma 4.9 with the unstructured Hölder
condition numbers of a linearization. Also, it could be of interest to study the effect
on the Hölder condition numbers if further structure is imposed on the coefficients of
the matrix polynomial and this structure is preserved by the linearization [21]. Some
results in this direction concerning structured pseudospectra can be found in [8, 41].

5. Conclusions. A definition of structured Hölder condition number for multi-
ple eigenvalues, both of matrices and of regular matrix pencils, has been introduced
with the purpose of comparing structured and unstructured condition numbers for
several classes of structured matrices and pencils. Moreover, eigenvalues of matrix
polynomials can be treated within this framework via linearization through compan-
ion form. Like previous Hölder condition numbers in the literature, the structured
condition number κ(A, λ; S) = (nS, αS) has two entries, the first one related to the
leading exponent, the second one to the leading coefficient in the asymptotic expan-
sions of perturbed eigenvalues. Although the present paper focuses on the case when
the first entry nS coincides with the one in the unstructured condition number, some
examples are given when this does not happen (see, e.g., (6) and (7)).

According to the results in this paper, the behavior of multiple eigenvalues under
structured perturbations does not differ much from the one for simple eigenvalues
described in [3, 16, 32], in the sense that the influence of structure on the condition
number is usually mild, except in a few, quite specific situations. All these situations
seem to be related to a combination of symmetry with skew-symmetry, either for ma-
trices which are skew-symmetric with respect to a symmetric bilinear form (Theorem
3.8(ii) and (iv)) or for symmetric/skew-symmetric pencils (Theorem 4.5(iv)). Palin-
dromic pencils (Theorem 4.7) represent another instance of the interplay between
symmetry and skew-symmetry; see (24). Understanding why this happens is one of
the open questions raised by such results. Also, there are a few cases where all we can
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say is that nS = n1, with no further information to compare αS and α. Such cases
remain as objects of future study.

Another open problem is a more complete picture of what happens in those cases
where nS < n1, i.e., whenever structured perturbations induce a behavior qualitatively
different from the one induced by unstructured ones.

Appendix. Structured canonical forms. This section collects known results
on canonical forms for structured matrices and matrix pencils used in this paper. The
forms are constructed as direct sums of the following m×m matrices:

Jordan block Flip matrix

Jm(λ) =

⎡
⎢⎢⎢⎢⎣

λ 1
. . . . . .

. . . 1
λ

⎤
⎥⎥⎥⎥⎦ , Fm =

⎡
⎢⎢⎢⎢⎣

1

. ..

. ..

1

⎤
⎥⎥⎥⎥⎦,

Signature matrix (m even) Signature matrix (m odd)

Σm =
[
Im/2

−Im/2

]
, Σm =

⎡
⎣ 0 I(m−1)/2

0 −I(m−1)/2

0 0 0

⎤
⎦ .

Proofs of the following theorems can be found in Thompson’s overview paper [38] and
in the more recent and more general work [25].

Theorem A.1 (complex symmetric matrix pencils). Consider the regular matrix
pencil A− λB with A and B complex symmetric matrices. There exists an invertible
matrix S such that

ST (A− λB)S = (A1 − λB1)⊕ · · · ⊕ (Ap − λBp),
where the diagonal blocks take the following forms:

(i) Aj − λBj = Fnj − λFnjJnj (0) for an infinite eigenvalue;
(ii) Aj − λBj = FnjJnj (λj)− λFnj for a finite eigenvalue λj.
Corollary A.2.

(i) Let λj be an eigenvalue of the matrix A satisfying ATM = MA for some
real orthogonal symmetric matrix M . Then the matrices X and Y defined
in (11)–(12) satisfy the relation Y = MX.

(ii) Let λj be a (finite or infinite) eigenvalue of the regular matrix pencil A−λB
with A and B complex symmetric. Then the matrices X and Y defined in (21)
satisfy the relation Y = X.

Proof. The first part is proven by applying Theorem A.1 to the pencil MA−λM .
This yields a matrix S with S−1 = (Fn1 ⊕ · · · ⊕ Fnp)STM such that S−1AS is in
Jordan canonical form. The result follows by inspection of (11)–(12). The second
part follows directly from combining Theorem A.1 with (21).

Theorem A.3 (complex skew-symmetric/symmetric matrix pencils). Consider
the regular matrix pencil A − λB with a complex skew-symmetric A and a complex
symmetric B. There exists an invertible matrix S such that

ST (A− λB)S = (A1 − λB1)⊕ · · · ⊕ (Ap − λBp),
where the diagonal blocks take the following forms:

(i) Aj − λBj = Fnj Σnj − λFnjJnj (0) for an infinite eigenvalue with nj even;
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(ii) Aj − λBj = [ 0
−Fnj

−λFnj
Jnj

(0)
Fnj

−λFnj
Jnj

(0)

0
] for an infinite eigenvalue with

nj odd;
(iii) Aj − λBj = Fnj Σnj − λFnj for a zero eigenvalue with nj odd;
(iv) Aj−λBj = [ 0

−Fnj
Jnj

(λj)−λFnj

Fnj
Jnj

(λj)−λFnj

0
] for a finite nonzero eigenvalue

pair ±λj or a zero eigenvalue λj with nj even.
Corollary A.4.

(i) Let λj be an eigenvalue of a matrix A satisfying ATM = −MA for some real
orthogonal symmetric matrix M . Then the following hold for the matrices X
and Y defined in (11)–(12):
(a) if λj = 0 and nj is odd, then Y = MX;
(b) if λj = 0 and nj is even, then Y = MX[ 0

−I
I
0 ];

(c) if λj �= 0, then the analogously defined matrices X̃ and Ỹ for −λj satisfy
X̃ = −Y, Ỹ = X.

(ii) Let λj be an eigenvalue of the regular matrix pencil A − λB with complex
symmetric A and complex skew-symmetric B. Then the following hold for
the matrices X and Y defined in (21):
(a) if λj =∞ and nj is odd, then Y = X;
(b) if λj =∞ and nj is even, then Y = X [ 0

−I
I
0 ];

(c) if λj = 0 and nj is odd, then Y = X[ 0
−I

I
0 ];

(d) if λj = 0 and nj is even, then Y = X;
(e) if λj �= 0, then the analogously defined matrices X̃ and Ỹ for −λj satisfy

X̃ = −Y, Ỹ = X.
Proof. The first part is proven by applying Theorem A.3 to A − λM . If λj = 0

and nj is odd, then Theorem A.3(iii) yields the relation Q = MP (Fnj ⊕ · · · ⊕ Fnj )
for the matrices P and Q defined in (8). An inspection of (11)–(12) verifies (a). If
λj = 0 and nj is even, then Theorem A.3(iv) yields

Q = MP

([
0 Fnj

−Fnj 0

]
⊕ · · · ⊕

[
0 Fnj

−Fnj 0

])

and thus Y = MX([ 0
−1

1
0 ]⊗ · · · ⊗ [ 0

−1
1
0 ]). A perfect shuffle of the columns of X and

Y yields (b). A similar argument leads to (c).
The second part is proven by applying Theorem A.3 to B − λA.
Theorem A.5 (complex skew-symmetric matrix pencils). Consider the regular

matrix pencil A− λB with A and B complex skew-symmetric matrices. There exists
an invertible matrix S such that

ST (A− λB)S = (A1 − λB1)⊕ · · · ⊕ (Ap − λBp),
where the diagonal blocks take the following forms:

(i) Aj − λBj = [ 0
−Fnj

+λFnj
Jnj

(0)
Fnj

−λFnj
Jnj

(0)

0
] for an infinite eigenvalue;

(ii) Aj − λBj = [ 0
−Fnj

Jnj
(λj)+λFnj

Fnj
Jnj

(λj)−λFnj

0
] for a finite eigenvalue.

Corollary A.6.

(i) Let λj be an eigenvalue of a matrix A satisfying ATM = MA for some real
orthogonal skew-symmetric matrix M . Then the matrices X and Y defined
in (11)–(12) satisfy Y = −MX[ 0

−I
I
0 ].

(ii) Let λj be a (finite or infinite) eigenvalue of the regular matrix pencil A−λB
with A and B complex symmetric. Then the matrices X and Y defined in (21)
satisfy the relation Y = −X[ 0

−I
I
0 ].
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Proof. Using Theorem A.5, the proof is analogous to the proof of Corollary
A.4(i)(b).
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[20] V. B. Lidskĭı, On the theory of perturbations of nonselfadjoint operators, Z̆. Vyčisl. Mat. i
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STRATIFICATION OF CONTROLLABILITY AND OBSERVABILITY
PAIRS—THEORY AND USE IN APPLICATIONS∗

ERIK ELMROTH†, STEFAN JOHANSSON† , AND BO KÅGSTRÖM†

Abstract. Cover relations for orbits and bundles of controllability and observability pairs
associated with linear time-invariant systems are derived. The cover relations are combinatorial
rules acting on integer sequences, each representing a subset of the Jordan and singular Kronecker
structures of the corresponding system pencil. By representing these integer sequences as coin piles,
the derived stratification rules are expressed as minimal coin moves between and within these piles,
which satisfy and preserve certain monotonicity properties. The stratification theory is illustrated
with two examples from systems and control applications, a mechanical system consisting of a thin
uniform platform supported at both ends by springs, and a linearized Boeing 747 model. For both
examples, nearby uncontrollable systems are identified as subsets of the complete closure hierarchy
for the associated system pencils.

Key words. stratification, matrix pairs, controllability, observability, robustness, Kronecker
structures, orbit, bundle, closure hierarchy, cover relations, StratiGraph
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1. Introduction. Computing the canonical structure of a linear time-invariant
(LTI) system, ẋ(t) = Ax(t) + Bu(t) with states x(t) and inputs u(t), is an ill-posed
problem; i.e., small changes in the input data matrices A andB may drastically change
the computed canonical structure of the associated system pencil

[
A− λI B

]
(e.g.,

see [13]). Besides knowing the canonical structure, it is equally important to be able
to identify nearby canonical structures in order to explain the behavior and possibly
determining the robustness of a state-space system under small perturbations. For
example, a state-space system which is found to be controllable may be very close to
an uncontrollable one; and can, therefore, by only a small change in some data, e.g.,
due to round-off or measurement errors, become uncontrollable. If the LTI system
considered and all nearby systems in a given neighborhood are controllable, the system
is called robustly controllable (e.g., see [46]).

The qualitative information about nearby linear systems is revealed by the theory
of stratification for the corresponding system pencil. A stratification shows which
canonical structures are near to each other (in the sense of small perturbations) and
their relation to other structures; i.e., the theory reveals the closure hierarchy of orbits
and bundles of canonical structures. A cover relation guarantees that two canonical
structures are nearest neighbors in the closure hierarchy.

For square matrices, Arnold [1] examined nearby structures by small perturba-
tions using versal deformations. For matrix pencils, Elmroth and Kågström [23] first
investigated the set of 2-by-3 matrix pencils and later extended the theory, in col-
laboration with Edelman, to general matrices and matrix pencils [17, 18]. In line
of this work, the theory has further been developed in [21], and for matrix pairs
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a

b

c d

e

f

Fig. 1.1. A graph presenting a hypothetical closure hierarchy, where letters (a–f) represent
some canonical structures, the nodes represent orbits of these structures, and the edges represent
covering relations.

in [20, 42]. Several other people have worked on the theory of stratifications and
similar topics, and we refer to [2, 27, 31, 35, 49] and references therein. Further-
more, the related topic distance to uncontrollability has recently been studied in, e.g.,
[6, 22, 30, 33, 34, 46].

In this paper, we derive the cover relations for independent controllability and
observability pairs associated with LTI systems. These relations are combinatorial
rules acting on integer sequences, each representing a subset of the Jordan and sin-
gular Kronecker structures (canonical form) of the corresponding system pencil. By
following [17, 18], and representing these integer sequences as coin piles, the derived
stratification rules are expressed as simple coin moves between and within these piles.
Besides, only coin moves that satisfy and preserve certain monotonicity properties of
the integer sequences are valid moves.

Before we go into further details, we outline the contents of the rest of the paper.
In section 2, some linear systems background, including matrix pencil representa-
tions, are presented. In addition, a subsection introduces minimum coin moves for
piles of coins representing integer partitions that frequently appear in the covering
rules. Section 3 gives a concise presentation of the Kronecker canonical form (KCF) of
a general matrix pencil and its invariants, as well as the Brunovsky canonical form for
various system pencils. In section 4, system pencils for matrix pairs are considered.
Concepts introduced include orbits and bundles for controllability and observability
pairs, matrix representations for associated tangent spaces, and their codimensions
expressed in terms of the KCF invariants. Equipped with all these concepts and no-
tation, section 5 is devoted to the stratification theory, focusing on the derivation of
cover relations for matrix pair orbits and bundles. In section 6, we illustrate the strat-
ification theory by considering two examples from systems and control applications,
a mechanical system consisting of a thin uniform platform supported at both ends by
springs [44], and a linearized Boeing 747 model [51]. For both examples, we identify
nearby uncontrollable systems as subsets of the complete closure hierarchy for the
associated system pencils.

Following [18, 23], we present stratifications as graphs where each node represents
an orbit or a bundle of a canonical structure and an edge represents a covering relation.
A graph is organized with the most generic structure(s) at the top and other structures
further down, ordered by increasing degeneracy (increasing codimension). Figure 1.1
illustrates how to interpret such a graph, assuming that each node represents the orbit
of some canonical structure.
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The topmost node shows the structure denoted a as the most generic structure.
The edge to the node b illustrates that a covers b; i.e., the orbit of b is in the closure
of that of a and there are no other structures between them in the closure hierarchy.
Notably, all structures in the closure of b are also in the closure of a, although there are
no covering relations between a and these structures since b appears between them in
the hierarchy. Continuing downwards, b covers both c and d and there is no covering
relation between c and d. Further down, the orbit of e is in the closure of that of
d but not in the closure of c’s orbit. The most degenerate structure is f , which is
covered by both c and e, actually showing that f ’s orbit is in the intersection of the
orbits of c and e. In this example, f is the most degenerate structure, whose orbit is
in the closure of all other orbits.

In section 6, we make use of this type of graphs to illustrate closure hierarchies.
The graphs presented are generated with StratiGraph [21, 38, 40, 41], which is a
software tool for determining and presenting closure hierarchies based on the theory
in [17, 18, 42]. The current version of StratiGraph (v. 2.2) has support for stratification
of matrices, matrix pencils, and controllability and observability pairs. The theory of
the latter is presented and illustrated in this paper.

2. Background and notation. A linear time-invariant, finite dimensional sys-
tem (LTI system) is in continuous time represented as a state-space model by a system
of the differential equations

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(2.1)

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, and D ∈ Cp×m. Such a state-space system
is in short form represented by the quadruple of matrices (A,B,C,D).

System (2.1) is said to be controllable if there exists an input signal u(t), t0 ≤ t ≤
tf , that takes every state variable from an initial state x(t0) to a desired final state
x(tf) in finite time. Otherwise it is said to be uncontrollable. The dual concept of
controllability is observability. System (2.1) is said to be observable if it is possible
to find the initial state x(t0) from the input signal u(t) and the output signal y(t)
measured over a finite interval t0 ≤ t ≤ tf . Otherwise it is said to be unobservable.

The controllability and observability of a system depend only on the matrix pairs
(A,B) and (A,C), respectively, associated with the particular systems

ẋ(t) = Ax(t) +Bu(t), and
ẋ(t) = Ax(t),
y(t) = Cx(t),

of (2.1). The matrix pairs (A,B) and (A,C) are referred to as the controllability and
observability pairs, respectively.

2.1. The pencil representation. The set of matrices of the form G − λH with
λ ∈ C corresponds to a general matrix pencil, where the two complex matrices G and
H are of size mp × np. Notice that all matrix pencils where mp �= np are singular,
which is the case in most control applications.

A state-space system (2.1) can also be represented and analyzed in terms of a
matrix pencil, which in this special form is called a system pencil, S(λ). Contrary to
a general matrix pencil, a system pencil emphasizes the structure of the system. The
associated system pencil for the state-space system (2.1) is

S(λ) = G − λH =
[
A B
C D

]
− λ

[
In 0
0 0

]
,(2.2)
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Fig. 2.1. Minimum rightward and leftward coin moves illustrate that κ = (3, 2, 2, 1) covers
ν = (3, 2, 1, 1, 1) and κ = (3, 2, 2, 1) is covered by τ = (3, 3, 1, 1).

where G and H are of size (n + p) × (n + m) and, consequently, mp = n + p and
np = n+m. The corresponding system pencils for the controllability and observability
pairs are

SC(λ) =
[
A B

]− λ [In 0
]
, and SO(λ) =

[
A
C

]
− λ

[
In
0

]
.

In the rest of the paper, we are mainly only considering the controllability and
observability pairs and their associated system pencils.

2.2. Integer partitions and coins. We give a brief introduction to integer
partitions and minimum coin moves, which are used to represent the invariants of the
matrix and system pencils and to define the stratification rules.

An integer partition κ = (κ1, κ2, . . . ) of an integerK is a monotonically decreasing
sequence of integers (κ1 ≥ κ2 ≥ · · · ≥ 0) where κ1 +κ2 + · · · = K. We denote the sum
κ1 + κ2 + · · · as

∑
κ. The union τ = (τ1, τ2, . . . ) of two integer partitions κ and ν is

defined as τ = κ ∪ ν where τ1 ≥ τ2 ≥ · · · . The difference τ of two integer partitions
κ and ν is defined as τ = κ \ ν, where τ includes the elements from κ except elements
existing in both κ and ν, which are removed. Furthermore, the conjugate partition of
κ is defined as ν = conj(κ), where νi is equal to the number of integers in κ that is
equal or greater than i, for i = 1, 2, . . . .

If ν is an integer partition, not necessarily of the same integer K as κ, and
κ1 + · · · + κi ≥ ν1 + · · · + νi for i = 1, 2, . . . , then κ ≥ ν. When κ ≥ ν and κ �= ν
then κ > ν. If κ, ν and τ are integer partitions of the same integer K and there does
not exist any τ such that κ > τ > ν where κ > ν, then κ covers ν. It follows that κ
covers ν if and only if κ > ν and conj(κ) < conj(ν). A weaker definition of cover is
adjacent [11, 35], where κ and ν can be partitions of different integers. We say that
κ > ν are adjacent partitions if either κ covers ν or if κ = ν ∪ (1).

An integer partition κ = (κ1, . . . , κn) can also be represented by n piles of coins,
where the first pile has κ1 coins, the second κ2 coins and so on. An integer partition
κ covers ν if ν can be obtained from κ by moving one coin one column rightward or
one row downward, and keep κ monotonically decreasing. Or, equivalently, an integer
partition κ is covered by τ if τ can be obtained from κ by moving one coin one column
leftward or one row upward, and keep κ monotonically decreasing. These two types of
coin moves are defined in [18] and called minimum rightward and minimum leftward
coin moves, respectively (see Figure 2.1).

3. Canonical forms and invariants. In the following, we introduce the Kro-
necker canonical form (KCF) of a general matrix pencil and its invariants in terms of
integer sequences, as well as the Brunovsky canonical form for various system pencils.

3.1. Kronecker canonical form. Any general mp× np matrix pencil G − λH
can be transformed into Kronecker canonical form (KCF) in terms of an equivalence
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transformation with two nonsingular matrices U and V [26]:

U(G − λH)V −1

= diag
(
Lε1 , . . . , Lεr0

, J(μ1), . . . , J(μq), Ns1 , . . . , Nsg∞ , L
T
η1 , . . . , L

T
ηl0

)
,

(3.1)

where J(μi) = diag(Jh1(μi), . . . , Jhgi
(μi)), i = 1, . . . , q. The blocks Jhk

(μi) are hk×hk
Jordan blocks associated with each distinct finite eigenvalue μi and the blocks Nsk

are
sk×sk Jordan blocks for matrix pencils associated with the infinite eigenvalue. These
two types of blocks constitute the regular part of a matrix pencil and are defined by

Jhk
(μi) =

⎡
⎢⎣
μi−λ 1

. . . . . .
μi−λ 1

μi−λ

⎤
⎥⎦ , and Nsk

=

⎡
⎣1 −λ

. . . . . .
1 −λ

1

⎤
⎦ .

If mp �= np or det(G − λH) ≡ 0 for all λ ∈ C, then r0 ≥ 1 and/or l0 ≥ 1 and
the matrix pencil also includes a singular part which consists of the r0 right singular
blocks Lεk of size εk× (εk+1) and the l0 left singular blocks LTηk

of size (ηk+1)×ηk:

Lεk =
[−λ 1. . . . . .−λ 1

]
, and LTηk

=

⎡
⎣−λ1 . . .. . . −λ

1

⎤
⎦ .

L0 and LT0 blocks are of size 0×1 and 1×0, respectively, and each of them contributes
with a column or row of zeros.

In general, a block diagonal matrix A = diag(A1, A2, . . . , Ab) with b blocks can
also be represented as a direct sum

A ≡ A1 ⊕A2 ⊕ · · · ⊕Ab ≡
b⊕

k=1

Ak.

Using this notation, the KCF (3.1) can compactly be rewritten as

U(G − λH)V −1 ≡ L⊕ L
T ⊕ J(μ1)⊕ · · · ⊕ J(μq)⊕ N,

where

L =
r0⊕
k=1

Lεk , L
T =

l0⊕
k=1

LTηk
, J(μi) =

gi⊕
k=1

Jhk
(μi), and N =

g∞⊕
k=1

Nsk
.

Without loss of generality, we order the blocks of the KCF in the direct sum notation
so that the singular blocks (L and L

T ) appear first.

3.2. Invariants of matrix pencils. The matrix pencil characteristics can equiv-
alently be expressed in terms of column/row minimal indices and finite/infinite ele-
mentary divisors. Two matrix pencils are strictly equivalent if and only if they have
the same minimal indices and elementary divisors or, equivalently, if they have the
same KCF, i.e., the same L, LT , J , and N blocks.

The four invariants are defined as follows [26]:
(i) The column (right) minimal indices are ε = (ε1, . . . , εr0), where ε1 ≥ ε2 ≥

· · · ≥ εr1 > εr1+1 = · · · = εr0 = 0 define the sizes of the Lεk blocks, εk × (εk + 1).
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From the conjugate partition (r1, . . . , rε1 , 0, . . . ) of ε we define the integer partition
R(G − λH) = (r0) ∪ (r1, . . . , rε1).

(ii) The row (left) minimal indices are η = (η1, . . . , ηl0), where η1 ≥ η2 ≥ · · · ≥
ηl1 > ηl1+1 = · · · = ηl0 = 0 define the sizes of the LTηk

blocks, (ηk + 1) × ηk.
From the conjugate partition (l1, . . . , lη1 , 0, . . . ) of η we define the integer partition
L(G − λH) = (l0) ∪ (l1, . . . , lη1).

(iii) The finite elementary divisors are of the form (λ − μi)h(i)
1 , . . . , (λ − μi)h

(i)
gi ,

with h
(i)
1 ≥ · · · ≥ h

(i)
gi ≥ 1 for each of the q distinct finite eigenvalue μi, i = 1, . . . , q.

Here, gi is the geometric multiplicity of μi and the sum of all h(i)
k for k = 1, . . . , gi

is the algebraic multiplicity of μi. For each distinct eigenvalue μi, we introduce the
integer partition hμi = (h(i)

1 , . . . , h
(i)
gi ), which is known as the Segre characteristics.

These characteristics correspond to the sizes h(i)
k × h

(i)
k of the Jhk

(μi) blocks (the
largest first). The conjugate partition J μi(G − λH) = (j1, j2, . . . ) of hμi is the Weyr
characteristics of μi.

(iv) The infinite elementary divisors are of the form ρs1 , ρs2 , . . . , ρsg∞ , with s1 ≥
· · · ≥ sg∞ ≥ 1, where g∞ is the geometric multiplicity of the infinite eigenvalue and
the sum of all sk for k = 1, . . . , g∞ is the algebraic multiplicity. Similarly to case
(iii), the integer partition s = (s1, . . . , sg∞) is the Segre characteristics for the infinite
eigenvalue, which correspond to the sizes sk × sk of the Nsk

blocks. The conjugate
partition N (G − λH) = (n1, n2, . . . ) of s is the Weyr characteristics of the infinite
eigenvalue.

When it is clear from context, we use the abbreviated notation R, L, J , and N ,
for the above defined integer partitions corresponding to the right and left singular
structures, and the Jordan structures of the finite and infinite eigenvalues, respectively.
In the following, these integer partitions are referred to as structure integer partitions.

The system pencils S(λ), SC(λ), and SO(λ) can also be expressed in terms of
the above invariants and their associated structure integer partitions. However, in
general their corresponding invariants are different. For example, the system pencil
SC(λ) of a completely controllable system associated with the pair (A,B) can only
have L blocks in its KCF while S(λ) (2.2) may have both types of singular invariants
(blocks) as well as eigenvalues in its KCF.

3.3. Brunovsky canonical form. When considering canonical forms of the
system pencils SC(λ) and SO(λ) associated with pairs of matrices, we are (mainly)
interested in canonical forms obtained from structure-preserving equivalence trans-
formations. One such example is the Brunovsky canonical form. This canonical form
explicitly reveals the system characteristics from the system pencils. This is in con-
trast to the KCF, which destroys the special block structure of SC(λ) and SO(λ),
respectively, and only implicitly gives the system characteristics. Canonical and con-
densed forms for generalized matrix pairs appearing in descriptor systems [5, 43] are
out of the scope of this paper.

Given a controllability pair (A,B) there exists a feedback equivalent (also known
as Γ-equivalent or block similar) matrix pair (AB , BB) in Brunovsky canonical form
(BCF) [4, 28, 31], such that

P
[
A− λIn B

] [P−1 0
R Q−1

]
=
[
Aε 0 Bε
0 Aμ 0

]
,(3.2)

where Aε = diag(Jε1(0), . . . , Jεr1
(0)), Aμ = diag(J(μ1), . . . , J(μq)), and Bε =

diag(eε1 , . . . , eεr0
). The transformation matrices P ∈ Cn×n and Q ∈ Cm×m are non-

singular and R ∈ Cm×n. Each block J(μi) in Aμ is block diagonal with the Jordan



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STRATIFICATION OF MATRIX PAIRS 209

blocks for the specified finite eigenvalue μi. Jεi(0) is a nilpotent matrix in its reduced
Jordan form and ei = [0, . . . , 0, 1]T ∈ C

i×1. Moreover, the matrix pair (Aε, Bε) is con-
trollable and corresponds to the L blocks in the KCF of SC(λ). If rank(SC(λ)) < n
for some λ ∈ C, then (A,B) is uncontrollable and there exists a regular pencil Aμ
whose eigenvalues correspond to the uncontrollable eigenvalues (modes).

The dual form of BCF for the observability pair (A,C) is

[
P S
0 T

] [
A− λIn

C

]
P−1 =

[
AB − λIn

CB

]
=

⎡
⎣ Aη 0

0 Aμ
Cη 0

⎤
⎦ ,(3.3)

where Aη = diag(Jη1(0), . . . , Jηl1
(0)), Aμ = diag(J(μ1), . . . , J(μq)), and Cη =

diag(eTη1 , . . . , e
T
ηl0

). The transformation matrices P ∈ Cn×n and T ∈ Cp×p are non-
singular and S ∈ C

n×p. The matrix pair (Aη, Cη) is observable and corresponds to
the LT blocks. If rank(SO(λ)) < n for some λ ∈ C, then (A,C) is unobservable and
there exists a regular pencil Aμ whose eigenvalues correspond to the unobservable
eigenvalues (modes).

Some of the system characteristics that the BCF directly reveals are as follows:
(A,B) has exactlymL blocks, one for each column in Bε, andm−rank(BB) L0 blocks.
Likewise, (A,C) has exactly p LT blocks, one for each row in Cη, and p− rank(CB)
LT0 blocks. Since εr1+1 = · · · = εr0 = 0, the column vectors eεr1+1 , . . . , eεr0

are 0 × 1
and correspond to the L0 blocks; rank(B) = m−#(L0 blocks). For each L0 block one
input signal uk(t) can be removed without losing controllability of (Aε, Bε). Likewise,
the row vectors eTηl1+1

, . . . , eTηl0
are 1× 0 and correspond to the LT0 blocks, where for

each LT0 block one output signal yk(t) can be removed without losing observability of
(Aη, Cη).

4. The system pencil space. An n × (n + m) controllability pair (A,B) has
n2 + nm free elements and, therefore, belongs to an (n2 + nm)-dimensional (system
pencil) space, one dimension for each parameter. A controllability pair (A,B) can be
seen as a point in the (n2+nm)-dimensional space, and the union of equivalent matrix
pairs as a manifold in this space [17, 18]. Similarly, the (n+ p)× n observability pair
(A,C) is a point in an (n2 + np)-dimensional system pencil space. We say that the
matrix pair “lives” in the space spanned by the manifold, and the dimension of the
manifold is given from the number of parameters of the matrix pair, where each fixed
parameter gives one less degree of freedom. The dimension of the complementary
space to the manifold is called the codimension.

The orbit of a matrix pair, O(A,B) or O(A,C), is a manifold of all equivalent
matrix pairs, i.e., manifolds in the (n2 + nm)-dimensional and (n2 + np)-dimensional
spaces, respectively. In the following, when something holds for both (A,B) and
(A,C) we denote the matrix pairs with (∗), e.g., O(∗). Throughout this paper, we
consider only orbits under feedback equivalence [4, 31], which for the controllability
pairs is defined as

O(A,B) =
{
P
[
A− λI B

] [P−1 0
R Q−1

]
: det(P ) · det(Q) �= 0

}
,

and for observability pairs as

O(A,C) =
{[
P S
0 T

] [
A− λI
C

]
P−1 : det(P ) · det(T ) �= 0

}
.
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In other words, all matrix pairs in the same orbit have the same canonical form, with
the eigenvalues and the sizes of the Jordan blocks fixed. A bundle defines the union of
all orbits with the same canonical form but with the eigenvalues unspecified,

⋃
μi
O(∗)

[1]. We denote the bundle of a matrix pair by B(∗).
The dimension of the space O(A,B) is equal to the dimension of the tangent

space to O(A,B) at (A,B), denoted by tan(A,B). Similar definitions hold for the
matrix pair (A,C). The tangent spaces tan(A,B) and tan(A,C) can be represented
in matrix form as

[
TA TB

]
= X

[
A B

]
+
[
A B

] [−X 0
V W

]
,

and [
TA
TC

]
=
[
X Y
0 Z

] [
A
C

]
+
[
A
C

] [−X] ,
respectively, where X, Y, Z, V , and W are matrices of conforming sizes [7].

Using the technique in [17], the tangent vectors
[
TA TB

]
can be expressed in

terms of the vec-operator and Kronecker products (see also [7]):

[
vec(TA)
vec(TB)

]
= T(A,B)

⎡
⎣vec(X)

vec(V )
vec(W )

⎤
⎦ ,

where tan(A,B) is the range of the (n2 + nm)× (n2 + nm+m2) matrix

T(A,B) =
[
AT ⊗ In − In ⊗A In ⊗B 0

BT ⊗ In 0 Im ⊗B
]
.(4.1)

Similarly, tan(A,C) is the range of the (n2 + np)× (n2 + np+ p2) matrix

T(A,C) =
[
AT ⊗ In − In ⊗A CT ⊗ In 0
−In ⊗ C 0 CT ⊗ Ip

]
, where(4.2)

[
vec(TA)
vec(TC)

]
= T(A,C)

⎡
⎣vec(X)

vec(Y )
vec(Z)

⎤
⎦ .

The orthogonal complement of the tangent space is the normal space, nor(∗). The
dimension of the normal space is called the codimension of O(∗) [12, 52], denoted by
cod(∗). Together, the tangent and the normal spaces span the complete (n2 + nm)-
dimensional space for (A,B) and the complete (n2+np)-dimensional space for (A,C).

Knowing the canonical structure, the explicit expression for the codimension of
the controllability pair (A,B) is derived in [24]; see also [25]. By rewriting the result,
it is obvious that the computation of the codimension of (A,B) can be done using
parts of the expression for matrix pencils [12]. The codimension of the observability
pair (A,C) is easily derived by its duality to (A,B). In summary, the codimension of
the orbit of a controllability pair (A,B), with the column minimal indices ε1, . . . , εr0
and the finite elementary divisors h(i)

1 , . . . , h
(i)
gi for each distinct eigenvalue μi, is

cod(A,B) = cRight + cJor + cJor,Right,(4.3)
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where

cRight =
∑
εk>εl

(εk − εl − 1), cJor =
q∑
i=1

gi∑
k=1

(2k − 1)h(i)
k , and cJor,Right = r0

q∑
i=1

gi∑
k=1

h
(i)
k .

The codimension of the orbit of a observability pair (A,C), with the row minimal
indices η1, . . . , ηl0 and the finite elementary divisors h(i)

1 , . . . , h
(i)
gi for each distinct

eigenvalue μi, is

cod(A,C) = cLeft + cJor + cJor,Left,(4.4)

where

cLeft =
∑
ηk>ηl

(ηk − ηl − 1), cJor =
q∑
i=1

gi∑
k=1

(2k − 1)h(i)
k , and cJor,Left = l0

q∑
i=1

gi∑
k=1

h
(i)
k .

The value of the eigenvalues make no contribution to the codimension in the
bundle case. Therefore, knowing the codimension of an orbit, the codimension of the
corresponding bundle is one less for each distinct eigenvalue: cod(B(∗)) = cod(O(∗))−
(number of distinct eigenvalues). For example, if we are interested in a matrix pair
(A,B) with k unspecified eigenvalues and the rest with known specified values, the
codimension of B(A,B) is cod(O(A,B))− k.

5. Stratification of orbits and bundles. In this section, we present the strat-
ification of orbits and bundles of matrix pairs (A,B) and (A,C). The most and least
generic cases are considered in section 5.1, and in section 5.2 the coin rules represent-
ing the closure and cover relations are derived.

A stratification is a closure hierarchy of orbits (or bundles). Following [18, 23],
we represent the stratification by a connected graph where the nodes correspond to
orbits (or bundles) of canonical structures and the edges to their covering relations;
see Figures 1.1 and 6.2. The graph is organized from top to bottom with nodes in
increasing order of codimension.

Given a node representing an orbit (or bundle) of a canonical structure, the
closure of that orbit (or bundle) includes the orbit (or bundle) itself and all orbits
(or bundles) represented by the nodes which can be reached by a downward path. A
downward path is defined as a path for which all edges start in a node and end in
another node below in the graph. An upward path is a path in the opposite direction.
In the following, when it is clear from context we use the shorter term structure when
we refer to a canonical structure.

Given a matrix pair and its corresponding node in the graph, it is always possible
to make the pair more generic by a small perturbation, i.e., change the pair to one
corresponding to a node along an upward path from the node. It is normally not
possible to make a corresponding downward move by a small perturbation, i.e., a
structure is not, in general, near any of the more degenerate structures below in the
graph. However, the cases when a structure below in the hierarchy actually is nearby
are often of particular interest, as it shows that a more degenerate structure can be
found by a small perturbation.

5.1. Most and least generic cases. Almost all matrix pairs of the same size
and type (controllability or observability pairs) have the same canonical structure.
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This canonical structure corresponds to the most generic case and has the lowest
codimension in the closure hierarchy. The opposite case is the least generic case, or
equivalently, the most degenerate case with the highest codimension. In the closure
hierarchy graph, the most generic case is represented by the topmost node and the
most degenerate case by the bottom node. The canonical structures in between corre-
spond to degenerate (or nongeneric) cases, which from a computational point of view
can be a real challenge [14, 15].

The most generic structure of the controllability pair (A,B) has R = (r0, . . . ,
rα, rα+1) where r0 = · · · = rα = m, rα+1 = n mod m, and α = �n/m� [29, 53].
For the observability pair (A,C) the most generic structure has L = (l0, . . . , lα, lα+1)
where l0 = · · · = lα = p, lα+1 = n mod p, and α = �n/p�. The most degenerate
controllability pair has m L0 blocks and n Jordan blocks of size 1 × 1 corresponding
to an eigenvalue of multiplicity n. Similarly, the most degenerate observability pair
has p LT0 blocks and n 1 × 1 Jordan blocks. In other words, the most generic cases
of the matrix pairs correspond to completely controllable and observable systems,
while the most degenerate cases correspond to systems with n uncontrollable and n
unobservable multiple modes, respectively.

We remark that the above formulae to compute the most generic structure only
hold if there are no restrictions on the matrix pair. Otherwise, for example, when the
matrix pair has a special structure or fixed rank, the restrictions must be considered
when determining the most and least generic cases. There can even exist several most
generic structures, but only one with codimension 0 (if it exists). This has recently
been studied for general matrix pencils in, e.g., [9, 10, 37].

5.2. Closure and cover relations. To determine the closure hierarchy for n×
(n + m) controllability pairs we stratify the (n2 + nm)-dimensional system pencil
space into feedback equivalent orbits (or bundles). Similarly, the closure hierarchy
for (n + p) × n observability pairs is determined by the stratification of feedback
equivalent orbits (or bundles) in the (n2 + np)-dimensional system pencil space. The
stratification of orbits or bundles is given from the closure relations and further the
cover relations between these manifolds; see Arnold [1] and [17, 18]. An orbit covers
another orbit if its closure includes the closure of the other orbit and there is no orbit
in between in the closure hierarchy; i.e., they are nearest neighbors in the hierarchy.
The closure and cover relations for bundles are defined analogously.

Before we give the closure and cover relations for matrix pairs, we review some
results for matrices and general matrix pencils.

From the closure condition for nilpotent matrices derived in [1, 18] and the def-
inition of covering partitions, the cover relations for orbits of nilpotent matrices
are obtained [18]. The orbit of a matrix is the manifold of all similar matrices:
O(A) = {PAP−1 : det(A) �= 0}. If the matrix A has well-clustered eigenvalues but is
not nilpotent, we order the Jordan blocks such that A = diag(A1, . . . , Aq), where Ai
contains all Jordan blocks associated with the eigenvalue μi. Then for each matrix Ai,
we consider Ãi = Ai − μiI which is nilpotent, and the closure and cover relations for
nilpotent matrices are applicable. It follows that the number of eigenvalues and the
total size of all blocks associated with the same eigenvalue are the same for all orbits
in the closure hierarchy. This is in contrast to the bundle case where eigenvalues can
coalesce or split apart.

Theorem 5.1 ([1, 18]). O(A1) covers O(A2) if and only if some J μi(A2) can be
obtained from J μi(A1) by a minimum leftward coin move, and J μj (A2) = J μj (A1)
for all μj �= μi.
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In the case of not well-clustered eigenvalues, we have to consider the bundle case as
defined by Arnold [1]. Even if testing for closure relations between nilpotent matrices
is trivial, deciding if one bundle is in the closure of another bundle is an NP-complete
problem [18, 32]. The solution to the closure decision problem for matrix bundles is
given in [16, 18, 45], and the cover relations expressed in terms of coin moves in [18].

The necessary conditions for an orbit or a bundle of two matrix pencils to be
closest neighbors in a closure hierarchy were derived in [3, 8, 50], where the orbit is
the manifold of strictly equivalent matrix pencils: O(G − λH) = {U(G − λH)V −1 :
det(U) ·det(V ) �= 0}. These conditions were later complemented with the correspond-
ing sufficient conditions in [18]. Notice that in the following theorem, for the structure
integer partition J μi the eigenvalue μi belongs to the extended complex plane C, i.e.,
μi ∈ C∪ {∞}. Furthermore, the restrictions on r0 and l0 in rules 1 and 2 correspond
to the fact that the number of Lk and LTk blocks cannot change.

Theorem 5.2 ([18]). Given the structure integer partitions L, R, and J μi of
G − λH, where μi ∈ C, one of the following if-and-only-if rules finds G̃ − λH̃ such
that O(G − λH) covers O(G̃ − λH̃):

(1) Minimum rightward coin move in R (or L).
(2) If the rightmost column in R (or L) is one single coin, move that coin to a

new rightmost column of some J μi (which may be empty initially).
(3) Minimum leftward coin move in any J μi .
(4) Let k denote the total number of coins in all of the longest (= lowest) rows

from all of the J μi . Remove these k coins, add one more coin to the set, and
distribute k+ 1 coins to rp, p = 0, . . . , t and lq, q = 0, . . . , k− t− 1 such that
at least all nonzero columns of R and L are given coins.

Rules 1 and 2 are not allowed to make coin moves that affect r0 (or l0).
Necessary and sufficient conditions for closure relations between orbits of matrix

pairs (A,B) have been studied in [31], and later in [35, 36]. These are a subset of those
for general matrix pencils. Here we give our reformulation and slight modification of
the theorem originally presented in [36, Theorem 4.6] for orbits and the corresponding
theorem for bundles, where O denotes the orbit closure and B is the bundle closure.

Theorem 5.3 ([36, 42]). O(A,B) ⊇ O(Ã, B̃) if and only if the following condi-
tions hold:

(1) R(A,B) ≥ R(Ã, B̃).
(2) J μi(A,B) ≤ J μi(Ã, B̃), for all μi ∈ C, i = 1, . . . , q.
Theorem 5.4. If B(A,B) has at least as many distinct eigenvalues as B(Ã, B̃),

then B(A,B) ⊇ B(Ã, B̃) if and only if the following conditions hold:
(1) R(A,B) ≥ R(Ã, B̃).
(2) It is possible to coalesce eigenvalues and apply the dominance ordering coin

moves to J μi(A,B), for any μi, to reach (Ã, B̃).
Proof. The theorem follows directly from Theorem 5.3 and the closure condition

for matrix bundles presented in [18].
The conditions for closure relations between two observability matrix pairs (A,C)

are, from the duality with (A,B), equal to those for (A,B) except that R is replaced
by L.

In [35], also the necessary conditions for cover relations of matrix pencils with no
row minimal indices have been derived. A matrix pencil G − λH with no row minimal
indices differs from a controllability pair (A,B) in that it can have infinite elementary
divisors, which is not the case for standard matrix pairs. The cover relations [35,
Proposition 5.2] are summarized in Proposition 5.5 with some minor reformulations,
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where the invariants of G − λH and G̃ − λH̃ are

ε = (ε1, . . . , εr0), hμi =
(
h

(i)
1 , . . . , h(i)

gi

)
, s = (s1, . . . , sg∞), and

ε̃ = (ε̃1, . . . , ε̃r̃0), h̃μj =
(
h̃

(j)
1 , . . . , h̃

(j)
g̃j

)
, s̃ = (s̃1, . . . , s̃g̃∞),

respectively. Remark, the integer partitions associated with the same invariants of
G − λH and G̃ − λH̃, e.g., ε and ε̃, can be of different length.

Proposition 5.5 ([35]). Let G − λH and G̃ − λH̃ be two n × (n + m) matrix
pencils with no row minimal indices. If O(G − λH) covers O(G̃ − λH̃), then one of
the following conditions holds:

(1) conj(ε) > conj(ε̃) are adjacent, hμi = h̃μi for all eigenvalues μi, and s = s̃.
(2)

∑m
i=1 εi >

∑m
i=1 ε̃i, conj(ε) > conj(ε̃) are adjacent, h̃(i)

1 = h
(i)
1 + 1 for some

eigenvalue μi (where μi can be a new eigenvalue), and s = s̃.
(3)

∑m
i=1 εi >

∑m
i=1 ε̃i, conj(ε) > conj(ε̃) are adjacent, hμi = h̃μi for all eigenval-

ues μi, and s̃1 = s1 + 1 (where s and s̃ can be empty partitions).
(4) ε = ε̃, hμi > h̃μi for all eigenvalues μi, and s = s̃.
(5) ε = ε̃, hμi = h̃μi for all eigenvalues μi, and s > s̃.
From Theorem 5.3, Proposition 5.5, and the cover conditions for matrix pencils

in Theorem 5.2, it is possible to derive both necessary and sufficient conditions for a
covering relation between two controllability pairs (A,B). The result is given in The-
orem 5.6, where r0(A,B) denotes the number of column minimal indices for (A,B).
The proof is organized as follows. We modify Proposition 5.5 so that it fulfills the
restrictions given by the structure of the controllability pair and then, where required,
strengthen each condition so that they become not only necessary but also sufficient.

Theorem 5.6. O(A,B) covers O(Ã, B̃) if and only if one of the following con-
ditions holds:

(1) R(A,B) covers R(Ã, B̃) where r0(A,B) = r0(Ã, B̃), and J μi(A,B) =
J μi(Ã, B̃) for all eigenvalues μi.

(2) If rε1 = 1 and ε1 ≥ 1 for R(A,B), then R(Ã, B̃) = R(A,B) \ (rε1),
J μi(Ã, B̃) = J μi(A,B) ∪ (1) for some eigenvalue μi (where J μi(A,B) can
be an empty partition), and J μj (A,B) = J μj (Ã, B̃) for all μj �= μi.

(3) R(A,B) = R(Ã, B̃), J μi(A,B) covers J μi(Ã, B̃) for one eigenvalue μi, and
J μj (A,B) = J μj (Ã, B̃) for all μj �= μi.

Proof. Let 5.5(n) denote condition n of Proposition 5.5, and similarly, 5.6(m)
denotes condition m of Theorem 5.6.

A matrix pencil G − λH with no row minimal indices can have infinite elemen-
tary divisors which a controllability pair (A,B) cannot have. This restriction is intro-
duced by only considering finite elementary divisors, which obviously exclude 5.5(3)
and 5.5(5) (where G − λH and/or G̃ − λH̃ have infinite elementary divisors). The
remaining three conditions are now considered, and we begin each proof by rewriting
the conditions in the structure integer notation: R, L, and J .

First we consider 5.5(1) which can be rewritten as:
R(A,B) > R(Ã, B̃) are adjacent and J μi(A,B) = J μi(Ã, B̃).

Since the two matrix pairs have the same Jordan structure, the size of the right
singular parts of (A,B) and (Ã, B̃) must be equal, i.e.,

∑R(A,B) =
∑R(Ã, B̃).

Consequently, R(A,B) > R(Ã, B̃) are adjacent is strengthened to R(A,B) covers
R(Ã, B̃). This is also remarked in [35, proof of Theorem 5.1]. A consequence of the
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change of representation from column minimal indices to R is that we in 5.6(1) have
to introduce the restriction that r0 may not be affected. Otherwise, the number of
column minimal indices may change. The new condition is given in 5.6(1).

Now consider 5.5(2) which can be rewritten as:∑R(A,B) >
∑R(Ã, B̃), R(A,B) > R(Ã, B̃) are adjacent, and

J μi(Ã, B̃) = J μi(A,B) ∪ (1) for some μi (where μi can be a new
eigenvalue).

If
∑R(A,B) >

∑R(Ã, B̃), then R(A,B) > R(Ã, B̃) are adjacent if and only if
R(Ã, B̃) can be derived from R(A,B) in the following way. If rε1 = 1 and ε1 ≥ 1
for R(A,B), then R(Ã, B̃) = R(A,B) \ (rε1) [11]. Furthermore, the regular part is
expanded by increasing the largest block for some eigenvalue by one, or by creating
a 1 × 1 block for a new eigenvalue. It follows that condition 5.5(2) corresponds to
rule (2) for orbits of matrix pencils, which already fulfills both the necessary and
sufficient conditions, and we have 5.6(2).

Finally, 5.5(4) can be rewritten as:
R(A,B) = R(Ã, B̃) and J μi(A,B) < J μi(Ã, B̃) for all μi.

This condition considers the case when the two matrix pairs have equal right singular
parts, as opposed to 5.5(1) where the regular parts are the same. The conditions
R(A,B) = R(Ã, B̃) and J μi(A,B) < J μi(Ã, B̃) do not guarantee that (A,B) covers
(Ã, B̃). To guarantee that (A,B) covers (Ã, B̃) the corresponding integer partitions
J μi(A,B) and J μi(Ã, B̃) must also cover each other, which corresponds to the matrix
case (Theorem 5.1). The new condition is given in 5.6(3).

Theorem 5.7. B(A,B) covers B(Ã, B̃) if and only if one of the following condi-
tions holds:

(1) R(A,B) covers R(Ã, B̃) where r0(A,B) = r0(Ã, B̃), and J μi(A,B) =
J μi(Ã, B̃) for all eigenvalues μi.

(2) If rε1 = 1 and ε1 ≥ 1 for R(A,B), then R(Ã, B̃) = R(A,B) \ (rε1),
J μi(Ã, B̃) = (1) for a new eigenvalue μi, and J μj (A,B) = J μj (Ã, B̃) for
all μj �= μi.

(3) R(A,B) = R(Ã, B̃), J μi(A,B) covers J μi(Ã, B̃) for one eigenvalue μi, and
J μj (A,B) = J μj (Ã, B̃) for all μj �= μi.

(4) R(A,B) = R(Ã, B̃), J μi(Ã, B̃) = J μi(A,B) ∪ J μj (A,B) for one pair of
eigenvalues μi and μj, μi �= μj, and J μk

(A,B) = J μk
(Ã, B̃) for all μk �=

μi, μj.
Proof. The proof of the bundle case follows directly from Theorem 5.6 and the

covering rules for bundles of matrix pencils given in [18].
Notably, Theorem 5.7 has four rules in contrary to Theorem 5.6 which has three

rules. The additional rule (4) follows from the fact that eigenvalues can coalesce in
the bundle case.

From the dual relation between the controllability pair (A,B) and the observ-
ability pair (A,C), it follows that replacing partition R by L in Theorems 5.6 and
5.7 give the cover conditions for the observability pair (A,C). We remark that the
theorems are valid only for independent matrix pairs (A,B) and (A,C), respectively.
They cannot be applied straightforwardly to the related matrix triple (A,B,C) or
matrix quadruple (A,B,C,D). The covering relations for orbits and bundles of the
controllability and observability pairs in terms of coin rules are given in Corollar-
ies 5.8 and 5.9. The reformulations are done using the definition of integer partitions
in section 2.2.
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Table 5.1

Given the structure integer partitions R, L, and J µi
of a matrix pair, one of the following

if-and-only-if rules finds (Ã, B̃) or (Ã, C̃) fulfilling orbit or bundle covering relations with (A, B) or
(A, C), respectively.

A. O(A, B) covers O(Ã, B̃):
(1) Minimum rightward coin move in R.
(2) If the rightmost column in R is one

single coin, move that coin to a
new rightmost column of some J µi

(which may be empty initially).
(3) Minimum leftward coin move in any

J µi
.

Rules 1 and 2 are not allowed to do coin
moves that affect r0.

E. O(A, C) covers O(Ã, C̃):
(1) Minimum rightward coin move in L.
(2) If the rightmost column in L is one

single coin, move that coin to a
new rightmost column of some J µi

(which may be empty initially).
(3) Minimum leftward coin move in any

J µi
.

Rules 1 and 2 are not allowed to do coin
moves that affect l0.

B. B(A, B) covers B(Ã, B̃)
(1) Same as rule A(1).
(2) Same as rule A(2), except it is only

allowed to start a new set correspond-
ing to a new eigenvalue (i.e., no ap-
pending to nonempty sets).

(3) Same as rule A(3).
(4) Let any pair of eigenvalues coalesce,

i.e., take the union of their sets of
coins.

F. B(A, C) covers B(Ã, C̃):
(1) Same as rule E(1).
(2) Same as rule E(2), except it is only

allowed to start a new set correspond-
ing to a new eigenvalue (i.e., no ap-
pending to nonempty sets).

(3) Same as rule E(3).
(4) Let any pair of eigenvalues coalesce,

i.e., take the union of their sets of
coins.

C. O(A, B) is covered by O(Ã, B̃)
(1) Minimum leftward coin move in R,

without affecting r0.
(2) If the rightmost column in some J µi

consists of one coin only, move that
coin to a new rightmost column in R.

(3) Minimum rightward coin move in any
J µi

.

G. O(A, C) is covered by O(Ã, C̃):
(1) Minimum leftward coin move in L,

without affecting l0.
(2) If the rightmost column in some J µi

consists of one coin only, move that
coin to a new rightmost column in L.

(3) Minimum rightward coin move in any
J µi

.

D. B(A, B) is covered by B(Ã, B̃)
(1) Same as rule C(1).
(2) Same as rule C(2), except that J µi

must consist of one coin only.
(3) Same as rule C(3).
(4) For any J µi

, divide the set of coins
into two new sets so that their union
is J µi

.

H. B(A, C) is covered by B(Ã, C̃):
(1) Same as rule G(1).
(2) Same as rule G(2), except that J µi

must consist of one coin only.
(3) Same as rule G(3).
(4) For any J µi

, divide the set of coins
into two new sets so that their union
is J µi

.

Corollary 5.8. Given the structure integer partitions R and J μi of (A,B), one
of the if-and-only-if rules of A–D in Table 5.1 finds (Ã, B̃) fulfilling orbit or bundle
covering relations with (A,B).

Corollary 5.9. Given the structure integer partitions L and J μi of (A,C), one
of the if-and-only-if rules of E–H in Table 5.1 finds (Ã, C̃) fulfilling orbit or bundle
covering relations with (A,C).

The major difference between the rules for matrix pencils and matrix pairs is that
rule (4) in Theorem 5.2 does not apply to matrix pairs, since there is only one type
of singular blocks (Li or LTj ) in each matrix pair type. Moreover, rules (1) and (2) of
A–D in Table 5.1 apply only to the structure integer partition R and rules (1) and
(2) of E–H in Table 5.1 apply only to L.
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F

φ

z
k2d2

d1k1

Δl

Fig. 6.1. Mechanical system consisting of a uniform platform controlled by a vertical force [44].

6. Illustrating the stratification. To illustrate the concept of stratification we
consider two examples from systems and control applications. We use the software tool
StratiGraph [38, 41] for computing and visualizing the closure hierarchy graphs for
the different matrix pairs in the examples. The numerical results regarding Kronecker
structure information and upper/lower bounds are computed using the prototype of
the matrix canonical structure (MCS) toolbox for Matlab [39, 22].

6.1. Mechanical system. The first example is a mechanical system studied by
Mailybaev [44]; see Figure 6.1. It consists of a thin uniform platform supported at
both ends by springs, where the platform has mass m and length 2l, and the springs
have elasticity coefficients k1, k2 and viscous damping coefficients d1, d2. The position
of the platform is determined by the vertical coordinate z of its center and the angle
φ between the platform and the horizontal axis.

At distance Δl, −1 ≤ Δ ≤ 1, from the center of the platform a force F is applied,
which is the control parameter of the system. The equilibrium of the system when
F = 0 is assumed to be z = 0 and φ = 0. For a zero force F and a nonzero z
and/or φ, the system oscillates with a decaying amplitude until it reaches equilibrium
asymptotically. If the system is controllable, there exists a control action such that
the system can be put into equilibrium in finite time. Otherwise, if it is uncontrollable
or close to an uncontrollable system this task becomes difficult or even impossible.

By linearizing the equations of motion of the system near the equilibrium the
system can be expressed by the state-space model ẋ = Ax(τ) + Bu(τ), where the
derivative is taken with respect to time τ = t/ω and ω is a time scale coefficient. The
resulting state-space model is

⎡
⎢⎢⎣
ωż/l

ωφ̇
ω2z̈/l

ω2φ̈

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
−c1 −c2 −f1 −f2
−3c2 −3c1 −3f2 −3f1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
z/l
φ

ωż/l

ωφ̇

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0
1
−3Δ

⎤
⎥⎥⎦ ω

2

ml
F,(6.1)

where

c1 =
(k1 + k2)ω2

m
, c2 =

(k1 − k2)ω2

m
, f1 =

(d1 + d2)ω
m

, and f2 =
(d1 − d2)ω

m
.

Let us consider a controllability pair of (6.1), denoted (A0, B0), with the param-
eters d1 = 4, d2 = 4, k1 = 6, k2 = 6, m = 3, l = 1, ω = 0.01, and Δ = 0. The KCF of
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(A0, B0) is L2 ⊕ J1(α)⊕ J1(β) with the corresponding Brunovsky canonical form

[
AB BB

]− λ [I4 0
]

=

⎡
⎢⎢⎣

0 1 0 0 0
0 0 0 0 1
0 0 α 0 0
0 0 0 β 0

⎤
⎥⎥⎦− λ

⎡
⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎥⎦ ,

where α = −0.02 and β = −0.06. From the BCF of (A0, B0) we can directly see that
the system is uncontrollable with the uncontrollable modes α and β; rank

([
AB BB

]
−λ [I4 0

])
= 3 for λ ∈ {α, β}. The two uncontrollable modes correspond to that

the angle φ and its velocity φ̇ cannot be controlled by the force F .
In [44], Mailybaev developed a quantitative perturbation method for local analysis

of the uncontrollability set for a linear dynamical system depending on parameters.
A uncontrollability set is defined as the set of values of a parameter vector p for which
(A,B) depending on p is uncontrollable. In [44], an uncontrollable set for (A0, B0)
is computed by letting the parameters c1 and f1 be fixed and varying the parameter
vector p = (c2, f2,Δ) in the range of −c1 < c2 < c1 and −f1 < f2 < f1. It is also
shown how the modes of (A0, B0) are changing over this set.

With the stratification theory, the quantitative results presented in [22, 44] and
additional results like distance to uncontrollability [34, 46] are complemented with new
qualitative information. In the following, we step-by-step illustrate the procedure to
obtain the bundle stratification of the controllability pencil SC(λ) of size 4× 5, which
(A0, B0) is part of. Note that we can change only the values of the parameters c1, c2,
f1, f2, and Δ in the state-space model (6.1); The first two rows of the matrix A and the
first three of B are fixed. As we will see, due to the special structure of A and B not
all bundles or parts of these exist for (A,B), which would exist for a controllability
pair with unrestricted matrices A and B. We only show in details how to get the
subgraph representing the stratification of possible structures. The complete bundle
stratification of (A,B) is displayed in Figure 6.2, where the nodes corresponding to
the bundles of possible structures are highlighted by the grey area. Let c :k denote
node

c
k in Figure 6.2, where c is the codimension of the corresponding bundle and

k is an order number that identifies individual nodes with the same codimension.
The first step is to compute the codimension of (A0, B0) using (4.3):

cod(O(A0, B0)) = 0 + (1 + 1) + 1(1 + 1) = 4. To get the codimension of the bundle
the number of distinct eigenvalues are subtracted: cod(B(A0, B0)) = 4 − 2 = 2. In
Figure 6.2, B(A0, B0) corresponds to node 2:1. To find covered or covering bundle(s)
we use the set of rules B and D, respectively, in Table 5.1. To apply these rules we
express the KCF of (A0, B0) in terms of its structure integer partitions: R = (1, 1, 1),
J α = (1), and J β = (1). We are now ready to determine which bundle(s) that covers
B(A0, B0).

Rule D(1) is not applicable because it would affect r0 (the first column of R).
Rule D(2) can be applied to either J α or J β ; we choose the former:

R: , J α: , J β : ⇒ R: , J β : ,

which gives the structure L3 ⊕ J1(β). The rules D(3) and D(4) are not applicable
because J α and J β only have one coin each. So the only bundle covering B(A0, B0) is
the bundle with KCF L3⊕J1(β), which has codimension 1 and is represented by node
1:1 in Figure 6.2. Furthermore, this system is uncontrollable with one uncontrollable
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11
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12
1
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1

19
1

Codimension 0
1 L4

Codimension 1
1 L3 ⊕ J1(µ1)
Codimension 2
1 L2 ⊕ J1(µ1) ⊕ J1(µ2)
Codimension 3
1 L2 ⊕ J2(µ1)
2 L1 ⊕ J1(µ1) ⊕ J1(µ2) ⊕ J1(µ3)
Codimension 4
1 L1 ⊕ J2(µ1) ⊕ J1(µ2)
2 L0 ⊕ J1(µ1) ⊕ J1(µ2) ⊕ J1(µ3) ⊕ J1(µ4)
Codimension 5
1 L2 ⊕ 2J1(µ1)
2 L1 ⊕ J3(µ1)
3 L0 ⊕ J2(µ1) ⊕ J1(µ2) ⊕ J1(µ3)
Codimension 6
1 L1 ⊕ 2J1(µ1) ⊕ J1(µ2)
2 L0 ⊕ J3(µ1) ⊕ J1(µ2)
3 L0 ⊕ J2(µ1) ⊕ J2(µ2)
Codimension 7
1 L1 ⊕ J2(µ1) ⊕ J1(µ1)
2 L0 ⊕ 2J1(µ1) ⊕ J1(µ2) ⊕ J1(µ3)
3 L0 ⊕ J4(µ1)
Codimension 8
1 L0 ⊕ J2(µ1) ⊕ J1(µ1) ⊕ J1(µ2)
2 L0 ⊕ 2J1(µ1) ⊕ J2(µ2)
Codimension 9
1 L0 ⊕ J3(µ1) ⊕ J1(µ1)
Codimension 10
1 L0 ⊕ 2J1(µ1) ⊕ 2J1(µ2)
Codimension 11
1 L1 ⊕ 3J1(µ1)
2 L0 ⊕ 2J2(µ1)
Codimension 12
1 L0 ⊕ 3J1(µ1) ⊕ J1(µ2)
Codimension 13
1 L0 ⊕ J2(µ1) ⊕ 2J1(µ1)
Codimension 19
1 L0 ⊕ 4J1(µ1)

Fig. 6.2. The graph shows the complete bundle stratification of a 4 × 5 controllability pencil
SC (λ), where the grey area marks the possible structures for the mechanical system (6.1). The upper
number in each node is the codimension of the corresponding bundle. The lower number is an order
number that identifies individual nodes with the same codimension. The table to the right of the
graph displays the corresponding KCF structures associated with the nodes in the graph.

mode β = −0.06, which also can be seen from its BCF:

[
AB BB

]− λ [I4 0
]

=

⎡
⎢⎣

0 1 0 0 : 0
0 0 1 0 : 0
0 0 0 0 : 1
0 0 0 −0.06 : 0

⎤
⎥⎦− λ

⎡
⎢⎣

1 0 0 0 : 0
0 1 0 0 : 0
0 0 1 0 : 0
0 0 0 1 : 0

⎤
⎥⎦ .
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For the system (6.1), we can at least find two cases which belong to this bundle. The
first one1 occurs when the elasticity coefficients k1 and k2 are zero. This case is not of
practical interest, since it corresponds to a system with no springs. The second case
occurs when element A(4, 2) = 1.2e−3 becomes zero and element A(4, 3) is perturbed
with ε ≥ 1e−12. The KCF of this system is L3 ⊕ J1(0).

We continue by repeating the procedure for L3 ⊕ J1(β). As for the previous
structure, the only rule applicable is D(2). So, we take the single coin in J β and
move that to a new right-most column of R:

R: , J β : ⇒ R: ,

which gives the KCF L4 with BCF:

[
AB BB

]− λ [I4 0
]

=

⎡
⎢⎢⎣

0 1 0 0 : 0
0 0 1 0 : 0
0 0 0 1 : 0
0 0 0 0 : 1

⎤
⎥⎥⎦− λ

⎡
⎢⎢⎣

1 0 0 0 : 0
0 1 0 0 : 0
0 0 1 0 : 0
0 0 0 1 : 0

⎤
⎥⎥⎦ .

This is the most generic case represented by the topmost node 0:1 in Figure 6.2 and
has codimension 0. As we can see from its BCF, it is controllable; rank([AB BB]−
λ[I4 0]) = 4 for all λ ∈ C. In other words, there exists a control parameter F such
that any state of z and φ can be reached in finite time.

After having reached the most generic case and the top of the closure-hierarchy
graph, we continue by determining the bundle(s) covered by B(A0, B0) using the set
of rules B in Table 5.1. But first, we remark that the mechanical system represented
by the state-space system (6.1) must have an L block of at least size 2; i.e., it has
at most two uncontrollable modes. This can be seen by studying the system with all
parameters set to zero:⎡

⎢⎢⎣
ωż/l

ωφ̇
ω2z̈/l

ω2φ̈

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
z/l
φ

ωż/l

ωφ̇

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ ω

2

ml
F,

which has the KCF L2 ⊕ J2(0). The bundle of this canonical structure has codimen-
sion 3 and is represented by node 3:1 in Figure 6.2. Indeed, it is the most degenerate
structure possible for the state-space system (6.1). As we can see from the graph in
Figure 6.2, B(L2 ⊕ J2(0)) is covered by B(A0, B0). This closure relation is obtained
by applying rule B(4) to (A0, B0):

R: , J α:
⋃ J β : ⇒ R: , J α: .

We can also reach this bundle by changing the value of m in (A0, B0). Let (Ã0, B̃0)
have the same parameters as (A0, B0) but with m unfixed. With m = 4, (Ã0, B̃0)
has KCF L2⊕ J2(−0.2) and by a small perturbation on m we again reach the bundle
of (A0, B0), B(L2 ⊕ J1(μ1) ⊕ J1(μ2)). Actually, for m < 4 (Ã0, B̃0) has KCF L2 ⊕
J1(μ1)⊕ J1(μ2) with two real eigenvalues, and for m > 4 the system has instead one
complex conjugate pair of eigenvalues.

The only other rule that can be applied to (A0, B0) is rule B(2), producing the
structure L1⊕J1(μ1)⊕J1(μ2)⊕J1(μ3). However, this structure has three uncontrol-

1The parameters in A are c1 = c2 = 0, and one of f1 and f2 is nonzero while the other one is
equal to zero (Δ is arbitrary).
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lable modes which is not possible for the mechanical system considered. So, the closure
hierarchy for the state-space system (6.1) corresponds to the highlighted subgraph of
the complete bundle stratification of 4× 5 controllability pencil in Figure 6.2.

Notice, there also exists a structure L2⊕2J1(μ) (node 5:1) in the closure hierarchy
which has an L block of size at least two, and, therefore, also should be possible.
However, since the codimension of B(L2 ⊕ 2J1(μ)) is less than the most degenerate
case L2 ⊕ J2(0), this case cannot appear for this example.

6.2. Boeing 747. As the second example, we study the orbit closure hierarchy
of a linearized nominal longitudinal model of a Boeing 747 considered in [51]. In our
model we have joined nine inputs into five, which results in a model with 5 states, 6
outputs, and 5 inputs:

x =

⎡
⎢⎢⎢⎢⎣

δq
δVTAS
δα
δθ
δhe

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

pitch rate (rad/s)
true airspeed (m/s)
angle of attack (rad)

pitch angle (rad)
altitude (m)

⎞
⎟⎟⎟⎟⎠ , y =

⎡
⎢⎢⎢⎢⎢⎢⎣

δα

δV̇TAS
δθ
δq
δVz
δhe

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

angle of attack (rad)
acceleration (m/s2)
pitch angle (rad)
pitch rate (rad/s)

vertical velocity (m/s)
altitude (m)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

u =

⎡
⎢⎢⎢⎢⎣

δei
δeo
δih

δEPR1,4

δEPR2,3

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

total inner elevator (rad)
total outer elevator (rad)
stabilizer trim angle (rad)

total thrust engine #1 and #4 (rad)
total thrust engine #2 and #3 (rad)

⎞
⎟⎟⎟⎟⎠ ,

and the state-space matrices:

A =

⎡
⎢⎢⎢⎢⎣

−0.4861 0.000317 −0.5588 0 −2.04 · 10−6

0 −0.0199 3.0796 −9.8048 8.98 · 10−5

1.0053 −0.0021 −0.5211 0 9.30 · 10−6

1 0 0 0 0
0 0 −92.6 92.6 0

⎤
⎥⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎣

−0.291 −0.2988 −1.286 0.0026 0.007
0 0 −0.3122 0.3998 0.3998

−0.0142 −0.0148 −0.0676 −0.0008 −0.0008
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0
0 −0.0199 3.0796 −9.8048 8.98 · 10−5

0 0 0 1 0
1 0 0 0 0
0 0 −92.6 92.6 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 −0.3122 0.3988 0.3988
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Fig. 6.3. Subgraph of the complete orbit stratification of a controllability pencil of size 5 ×
10, where the grey area marks the possible structures for the Boeing 747 model. The node with
codimension 4 represents the orbit to a system corresponding to a Boeing 747 under flight. The four
nodes in the left-most branch of the graph represent the orbits of uncontrollable systems with one
uncontrollable mode.

These state-space matrices correspond to a Boeing 747 under straight-and-level
flight at altitude 600 m with speed 92.6 m/s, flap setting at 20◦, and landing gears
up. The aircraft has mass = 317,000 kg and the center of gravity coordinates are
Xcg = 25%, Ycg = 0, and Zcg = 0.

The corresponding controllability pencil of the state-space system is of size 5×10
and the observability pencil of size 11 × 5. First, let us consider the controllability
pencil. Using StratiGraph the complete stratification of the orbit to a 5×10 controlla-
bility pencil can be computed, which has 74 nodes and 133 edges. In our case, we are
only interested to know the closest uncontrollable systems which can be reached by a
perturbation of the system matrices. Instead of generating the complete stratification,
we derive only the controllable and the nearest uncontrollable systems, starting with
the controllability pencil given by the state-space matrices A and B above.

As in the previous example, we begin by determining the KCF of the controlla-
bility pair (A,B) which is 2L2 ⊕ L1 ⊕ 2L0 with codimension 4. From the KCF (and
BCF) we can see that the system is controllable with only three of the five input
signals.2

Using the set of rules A and C in Table 5.1, the closure hierarchy around (A,B)
can be determined. The resulting stratification graph is shown in Figure 6.3, where
node 4:1 corresponds to the orbit which (A,B) belongs to. We now take the structural

2The other two inputs (corresponding to the L0 blocks) can be removed without loss of control-
lability. However, for safety reasons it is customary to have redundancy in the actuation system and
the corresponding control surface in critical systems.
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Table 6.1

Lower and upper bounds from the controllability pair (A, B) of a Boeing 747 under flight with
KCF 2L2 ⊕ L1 ⊕ 2L0 to the less generic orbits shown in Figure 6.3.

Imposed structure
from 2L2 ⊕ L1 ⊕ 2L0 cod Lower bound Upper bound
L3 ⊕ 2L1 ⊕ 2L0 6 1.29e −4 4.02e −2
L2 ⊕ 2L1 ⊕ 2L0 ⊕ J1(μ) 8 4.33e −4 1.0
L3 ⊕ L2 ⊕ 3L0 9 5.97e −4 1.59e −3
L4 ⊕ L1 ⊕ 3L0 11 8.47e −4 1.59e −3
2L2 ⊕ 3L0 ⊕ J1(μ) 12 1.09e −3 2.48e −1
L3 ⊕ L1 ⊕ 3L0 ⊕ J1(μ) 13 1.33e −3 1.79e −1
L5 ⊕ 4L0 16 1.78e −2 5.56e −1
L4 ⊕ 4L0 ⊕ J1(μ) 18 7.57e −2 5.56e −1

restrictions of A and B into consideration. By keeping all zeros and ones constant and
choosing all free elements in A and B nonzero, it follows that the most generic orbit
must have at least 2L0 blocks: The number of L0 blocks is m− rank(B) = 5− 3 = 2.
This excludes O(5L1) and O(L2 ⊕ 3L1 ⊕ L0) from possible orbits, and the most
generic orbit is indeed the one (A,B) belongs to. The most degenerate orbit has
KCF 5L1 ⊕ J2(μ1) ⊕ 3J1(μ2), which is obtained by considering the system with all
parameters set to zero. This orbit is, however, more degenerate than those of interest.

Using the stratification graph together with bounds on the distance to uncontrol-
lability we can validate the robustness of the system. For a controllable pair (A,B),
the distance to uncontrollability [48] is defined as

τ(A,B) = min
{‖ [ΔA ΔB

] ‖ : (A+ ΔA,B + ΔB) is uncontrollable
}
,

where ‖ · ‖ denotes the 2-norm or Frobenius norm. Equivalently,

τ(A,B) = inf
λ∈C

σmin

([
A− λI B

])
,

where σmin(X) denotes the smallest singular value of X ∈ Cn×(n+m) [19]. Using the
Matlab implementation [47] of the methods presented in [34, 46], the distance to
uncontrollability can be computed where τ(A,B) is bounded within an interval (l, u]
with any desired accuracy tol ≥ u− l. For the above system, the computed distance
to uncontrollability is within (3.0323e−2, 3.0332e−2], where tol = 10−5.

Furthermore, using the technique presented in [22], the upper and lower bounds to
all less generic controllability pairs shown in Figure 6.3 can be computed; see Table 6.1.
The upper bounds are based on staircase regularizing perturbations, and the lower
bounds are of Eckart–Young type and are derived from the matrix representations
T(A,B) (4.1) and T(A,C) (4.2) of tan(A,B) and tan(A,C), respectively. For the upper
bounds, the implemented algorithm uses a naive approach to find a nearby matrix pair
and the computed upper bounds are sometimes too conservative. However, we can
observe that the above computed distance to uncontrollability is within the bounds
of the uncontrollable systems with codimensions 8, 12, and 13.

Briefly, we also consider the 11× 5 observability pencil SO(λ) given by the above
state-space matrices. This matrix pair has the KCF 5LT1 ⊕ LT0 with codimension 0,
i.e., it is completely observable. Considering the structural restrictions of (A,C), the
most degenerate orbit possible has the KCF 4LT1 ⊕ 2LT0 ⊕ J1(μ) with codimension 7.
This can be seen by studying the matrix C with all parameters set to zero; at most
two LT0 blocks can exist, p− rank(C) = 5− 3 = 2. Using the set of rules E (and G)
in Table 5.1, the closure hierarchy shown in Figure 6.4 is derived.
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Fig. 6.4. Subgraph of the complete orbit stratification of an observability pencil of size 11 ×
5, where the grey area marks the possible structures for the Boeing 747 model. The node with
codimension 0 represents the orbit to a system corresponding to a Boeing 747 under flight. The two
nodes 7:1 and 10:1 represent the orbits of unobservable systems with one unobservable mode.

7. Conclusions. We have derived the closure and cover conditions for orbits
and bundles of matrix pairs, where the cover conditions are new results. In line with
previous work on matrices and matrix pencils [17, 18], we have derived the stratifi-
cation rules for matrix pairs, both for controllability pairs (A,B) and observability
pairs (A,C), in terms of coin moves.

The results are illustrated with two examples taken from real applications in
systems and control. We show how the rules are used and how they provide qualita-
tive information of a system, which together with distance information are useful for
validating an LTI state-space system.
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CONVERGENCE ANALYSIS OF THE DOUBLING ALGORITHM
FOR SEVERAL NONLINEAR MATRIX EQUATIONS IN THE
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Abstract. In this paper, we review two types of doubling algorithm and some techniques for
analyzing them. We then use the techniques to study the doubling algorithm for three different
nonlinear matrix equations in the critical case. We show that the convergence of the doubling
algorithm is at least linear with rate 1/2. As compared to earlier work on this topic, the results we
present here are more general, and the analysis here is much simpler.
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solution, critical case, doubling algorithm, cyclic reduction, convergence rate
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1. Introduction. The doubling algorithm has been studied for various nonlinear
matrix equations in [1, 6, 7, 19, 21, 24, 27, 28, 34]. Its convergence behavior in the
critical case, however, has not been fully investigated. The doubling algorithm is said
to be structure-preserving (and denoted by SDA) because it preserves certain block
structures for matrix pairs (or pencils) related to matrix equations.

In section 2, we review two types of doubling algorithm and some techniques for
analyzing them. The presentation here is more general than in [34] and [24], to al-
low direct application to various matrix equations. In sections 3–5, the techniques
reviewed in section 2 are used to study the convergence behavior of the doubling
algorithm for three different nonlinear matrix equations in the critical case. As com-
pared to previous papers, the results here are obtained with only basic assumptions.
In particular, the results we obtain about a quadratic matrix equation arising from
quasi-birth-death processes are more general than previous results, and the analysis
here is much simpler. A connection between the doubling algorithm and the cyclic
reduction algorithm is also pointed out for that quadratic matrix equation. Some
concluding remarks are made in section 6.
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2. The doubling algorithm. The first three subsections are based on [34], [24],
and [27], but the presentation here is more general. The last subsection is directly
from [27].

2.1. SDA-1. For a given matrix pair

(2.1) L0 =
[
I −G0

0 F0

]
, M0 =

[
E0 0
−H0 I

]
,

where E0, F0, G0, H0 are n × n, m ×m, n ×m, m × n, respectively, we are going to
define

(2.2) Lk =
[
I −Gk
0 Fk

]
, Mk =

[
Ek 0
−Hk I

]

for all k ≥ 0. Assume that Lk and Mk have been defined and I −GkHk (and, thus,
I −HkGk) is nonsingular for k ≥ 0. Then we can define the matrices

L̃k =
[
I −Ek(I −GkHk)−1Gk
0 Fk(I −HkGk)−1

]
, M̃k =

[
Ek(I −GkHk)−1 0

−Fk(I −HkGk)−1Hk I

]
.

It is easily verified that L̃kMk = M̃kLk. We then define

Lk+1 = L̃kLk =
[
I − (Gk + Ek(I −GkHk)−1GkFk

)
0 Fk(I −HkGk)−1Fk

]
,

Mk+1 = M̃kMk =
[

Ek(I −GkHk)−1Ek 0
− (Hk + Fk(I −HkGk)−1HkEk

)
I

]
.

Therefore, the sequence {Lk,Mk} can be defined by the following doubling algorithm
if no breakdown occurs.

Algorithm 2.1. (SDA-1) Given E0, F0, G0, H0.
For k = 0, 1, . . . compute

Ek+1 = Ek(I −GkHk)−1Ek,(2.3)

Fk+1 = Fk(I −HkGk)−1Fk,(2.4)

Gk+1 = Gk + Ek(I −GkHk)−1GkFk,(2.5)

Hk+1 = Hk + Fk(I −HkGk)−1HkEk.(2.6)

The algorithm requires about 14
3 m

3 + 6m2n+ 6mn2 + 14
3 n

3 flops each iteration.
Note that the flop count is 64

3 n
3 when m = n.

2.2. SDA-2. For a given matrix pair

L0 =
[ −P0 I

T0 0

]
, M0 =

[
V0 0
Q0 −I

]
,

where all matrix blocks are n× n, we are going to define

(2.7) Lk =
[ −Pk I

Tk 0

]
, Mk =

[
Vk 0
Qk −I

]

for all k ≥ 0. Assume that Lk and Mk have been defined and Qk − Pk is nonsingular
for k ≥ 0. Then we can define the matrices

L̃k =
[
I −Vk(Qk − Pk)−1

0 Tk(Qk − Pk)−1

]
, M̃k =

[
Vk(Qk − Pk)−1 0
−Tk(Qk − Pk)−1 I

]
.
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It is easily verified that L̃kMk = M̃kLk. We then define

Lk+1 = L̃kLk =
[ − (Pk + Vk(Qk − Pk)−1Tk

)
I

Tk(Qk − Pk)−1Tk 0

]
,

Mk+1 = M̃kMk =
[

Vk(Qk − Pk)−1Vk 0
Qk − Tk(Qk − Pk)−1Vk −I

]
.

Therefore, the sequence {Lk,Mk} can be defined by the following doubling algorithm
if no breakdown occurs.

Algorithm 2.2. (SDA-2) Given V0, T0, Q0, P0.
For k = 0, 1, . . . , compute

Vk+1 = Vk(Qk − Pk)−1Vk,

Tk+1 = Tk(Qk − Pk)−1Tk,

Qk+1 = Qk − Tk(Qk − Pk)−1Vk,

Pk+1 = Pk + Vk(Qk − Pk)−1Tk.

This algorithm requires about 38
3 n

3 flops each iteration.

2.3. Relation between Lk and Mk. Suppose we have

(2.8) L0U = M0UE,

where the matrix pair (L0,M0) is the initialization for either SDA-1 or SDA-2, E is
a square matrix, and U is any matrix of suitable dimension.

Premultiplying (2.8) with L̃0 and using L̃0M0 = M̃0L0, we get L1U = M1UE
2.

In general, we have for each k ≥ 0

(2.9) LkU = MkUE
2k

.

Suppose that there are nonsingular matrices V and Z such that

(2.10) V L0Z = JL, V M0Z = JM ,

and JLJM = JMJL. Then it follows that

M0ZJL = V −1JMJL = V −1JLJM = L0ZJM ,

and

M1ZJ
2
L = M̃0M0ZJ

2
L = M̃0L0ZJMJL = L̃0M0ZJLJM = L̃0L0ZJ

2
M = L1ZJ

2
M .

In general, we have for each k ≥ 0

(2.11) MkZJ
2k

L = LkZJ
2k

M .

2.4. Result on special Jordan blocks. Let Jω,p be the p × p Jordan block
with a unimodular eigenvalue ω = eiθ:

(2.12) Jω,p ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ω 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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When p = 2m, let Γk,m be determined through the partition

(2.13) J2k

ω,2m =

[
J2k

ω,m Γk,m
0 J2k

ω,m

]
.

The following useful Lemma is proved in [27].
Lemma 2.1. The matrix Γk,m is invertible and satisfies

(2.14)
∥∥∥Γ−1

k,mJ
2k

ω,m

∥∥∥ = O(2−k),
∥∥∥J2k

ω,mΓ−1
k,mJ

2k

ω,m

∥∥∥ = O
(
2−k

)
as k→∞.

In the next three sections, we will apply the techniques reviewed in this section
to three different nonlinear matrix equations. Although the general approach will
be the same, we will need to fully exploit the special properties of each equation.
Among other things, the following two issues deserve special attention: (1) Given a
nonlinear matrix equation, how should we rewrite it in its equivalent form (2.8)? If
possible, we should try to get a form (2.8) that would lead to SDA-2 rather than
SDA-1, since SDA-2 is less expensive. (2) How should we choose the matrices JL and
JM in (2.10)? The matrices must satisfy JLJM = JMJL, and the resulting equation
(2.11) and an equation from a similar procedure should be easy to handle together.
We will keep these issues in mind when we carry out the convergence analysis for the
three equations.

3. A special nonlinear matrix equation. In this section we consider the
nonlinear matrix equation (NME)

X +ATX−1A = Q,(3.1)

where A,Q ∈ R
n×n with Q being symmetric positive definite. Various aspects of

the NME, like solvability, numerical solution, perturbation, and applications, can be
found in [8, 9, 13, 17, 22, 35, 38, 39, 40, 41] and the references therein.

For symmetric matrices X and Y , we write X ≥ Y (X > Y ) if X − Y is positive
semidefinite (definite). We use this definition of ordering only in this section, and will
use the elementwise order in sections 4 and 5. We assume that (3.1) has a symmetric
positive definite solution. Then [9] it has a maximal symmetric positive definite
solution X+ (X+ ≥ X for any symmetric positive definite solution X of (3.1)), and
ρ(X−1

+ A) ≤ 1, where ρ(·) is the spectral radius.
Let

(3.2) L0 =
[

0 I
AT 0

]
, M0 =

[
A 0
Q −I

]
.

It is easy to verify that the pencil M0−λL0 (also denoted by (M0, L0)) is symplectic,
i.e.,

M0JM
T
0 = L0JL

T
0 for J =

[
0 I
−I 0

]
.

Using Algorithm 2.2 with V0 = A, T0 = AT , Q0 = Q,P0 = 0, we have Tk = V Tk , Q
T
k =

Qk, P
T
k = Pk. So Algorithm 2.2 is simplified to the following, where we have used Ak

for Vk.
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Algorithm 3.1. Let A0 = A,Q0 = Q,P0 = 0.
For k = 0, 1, . . . , compute

Ak+1 = Ak(Qk − Pk)−1Ak,

Qk+1 = Qk −ATk (Qk − Pk)−1Ak,

Pk+1 = Pk +Ak(Qk − Pk)−1ATk .

The matrices Lk,Mk in (2.7) are now given by

(3.3) Lk =
[ −Pk I

ATk 0

]
, Mk =

[
Ak 0
Qk −I

]
.

It is noted in [34] that the cyclic reduction algorithm in [35] is recovered from
Algorithm 3.1 when Qk − Pk and Qk are replaced by Qk and Xk, respectively, where
the latter Qk and Xk are the notations used in [35, Algorithm 3.1]. So we know from
[35] that Qk − Pk > 0 in Algorithm 3.1. Thus, the algorithm is well defined and
0 ≤ Pk < Qk ≤ Q. This fact is also proved in [34] without using the results in [35].

It is easy to verify that

(3.4) M0

[
I
X+

]
= L0

[
I
X+

]
X−1

+ A.

We are interested in the case with ρ(X−1
+ A) = 1. It follows from [13, Theorem 2.4]

that the eigenvalues of X−1
+ A have the following characterization.

Theorem 3.1. For (3.1), the eigenvalues of the matrix X−1
+ A are precisely the

eigenvalues of the matrix pencil M0−λL0 inside or on the unit circle, with half of the
(necessarily even) partial multiplicities for each unimodular eigenvalue of the pencil.

In view of the connection between Algorithm 3.1 and the cyclic reduction algo-
rithm in [35], we know from [13] that the sequence Qk in Algorithm 3.1 converges to
X+ at least linearly with rate 1/2, as long as all eigenvalues of X−1

+ A on the unit circle
are semisimple. With the tools in section 2, we are going to prove more convergence
results for Algorithm 3.1, without any assumption on the unimodular eigenvalues of
X−1

+ A.
Suppose there are r Jordan blocks associated with unimodular eigenvalues of

(M0, L0). Then they have the form

(3.5) Jωj ,2mj =
[
Jωj,mj Γ0,mj

0 Jωj ,mj

]
, Γ0,mj ≡ emje

T
1 ,

where ωj = eiθj for j = 1, . . . , r.
By the results on Kronecker canonical form for a symplectic pencil (see [11] and

[33]), there exist nonsingular matrices V and Z such that

V L0Z =
[
In 0n
0n JHs ⊕ Im

]
≡ JL,(3.6)

VM0Z =
[
Js ⊕ J1 0l ⊕ Γ0

0n Il ⊕ J1

]
≡ JM ,(3.7)

where Js ∈ Cl×l consists of stable Jordan blocks (so ρ(Js) < 1), J1 = Jω1,m1 ⊕ · · · ⊕
Jωr,mr , Γ0 ≡ Γ0,m1 ⊕ · · ·⊕Γ0,mr , m = m1 + · · ·+mr, l = n−m, ⊕ denotes the direct
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sum of matrices and (·)H the conjugate transpose. Moreover, the nonsingular matrix
Z can be taken to be of the form Z = ZaZb with Za symplectic and Zb = In ⊕ Zc.
It follows that span{Z(:, 1 : n)} forms the unique weakly stable Lagrangian deflating
subspace of (M0, L0) corresponding to Js ⊕ J1.

Let Γk,mj be given by (2.13) with ω = ωj and m = mj . Since JLJM = JMJL, we
have by (2.11)

(3.8) MkZ

[
I 0

0
(
JHs
)2k

⊕ I

]
= LkZ

[
J2k

s ⊕ J2k

1 0⊕ Γk
0 I ⊕ J2k

1

]
,

where Γk = Γk,m1 ⊕ · · · ⊕ Γk,mr .
Similarly, there exist nonsingular matrices T and W such that

(3.9) TM0W = JL, TL0W = JM ,

and

(3.10) LkW

[
I 0

0
(
JHs
)2k

⊕ I

]
= MkW

[
J2k

s ⊕ J2k

1 0⊕ Γk
0 I ⊕ J2k

1

]
.

By Lemma 2.1 we have

(3.11)
∥∥∥Γ−1

k J2k

1

∥∥∥ = O
(
2−k

)
,
∥∥∥J2k

1 Γ−1
k J2k

1

∥∥∥ = O
(
2−k

)
as k →∞.

We now prove some convergence results for Algorithm 3.1. Partition Z and W as

Z =
[
Z1 Z3

Z2 Z4

]
, W =

[
W1 W3

W2 W4

]
,(3.12)

where Zi,Wi ∈ Cn×n (i = 1, . . . , 4).
Theorem 3.2. When ρ(X−1

+ A) = 1, the sequences {Ak, Qk, Pk} generated by
Algorithm 3.1 satisfy

(a) ‖Ak‖ = O(2−k);
(b) ‖Qk −X+‖ = O(2−k) and X+ = Z2Z

−1
1 ;

(c) ‖Pk − X−‖ = O(2−k) for X− = W2W
−1
1 if W1 is invertible; if A is also

invertible, then X− is a solution of (3.1) and the eigenvalues of X−1
− A are

the reciprocals of the eigenvalues of X−1
+ A;

(d) Qk − Pk converges to a singular matrix as k →∞.
Proof. (a) Substituting Lk and Mk of (3.3) and Z of (3.12) into (3.8), we obtain

AkZ1 = (−PkZ1 + Z2)
(
J2k

s ⊕ J2k

1

)
,(3.13)

AkZ3

((
JHs
)2k

⊕ I
)

= (−PkZ1 + Z2)(0⊕ Γk) + (−PkZ3 + Z4)
(
I ⊕ J2k

1

)
,(3.14)

QkZ1 − Z2 = ATk Z1

(
J2k

s ⊕ J2k

1

)
,(3.15)

(QkZ3 − Z4)
((
JHs
)2k

⊕ I
)

= ATkZ1(0 ⊕ Γk) +ATk Z3

(
I ⊕ J2k

1

)
.(3.16)

From (3.6) and (3.7) we have

M0

[
Z1

Z2

]
= L0

[
Z1

Z2

]
(Js ⊕ J1).
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By Theorem 3.1, X−1
+ A is similar to Js ⊕ J1. Then from (3.4) and the uniqueness of

weakly stable Lagrangian deflating subspaces of (M0, L0) corresponding to Js ⊕ J1,
we have [

Z1

Z2

]
=
[

I
X+

]
R

for a nonsingular matrix R. It follows that Z−1
1 exists and X+ = Z2Z

−1
1 .

Postmultiplying (3.14) by (0⊕ Γ−1
k J2k

1 )Z−1
1 and using (3.13), we have

Ak

[
I − Z3

(
0⊕ Γ−1

k J2k

1

)
Z−1

1

]
= (−PkZ1 + Z2)

(
J2k

s ⊕ 0
)
Z−1

1 − (−PkZ3 + Z4)
(
0⊕ J2k

1 Γ−1
k J2k

1

)
Z−1

1 .

It follows from (3.11) and the boundedness of {Pk} that

(3.17) ‖Ak‖ = O
(
2−k

)
.

(b) Postmultiplying (3.16) by (0⊕ Γ−1
k J2k

1 )Z−1
1 and using (3.15), we get

Qk

[
I − Z3

(
0⊕ Γ−1

k J2k

1

)
Z−1

1

]
−X+

=
[
ATk Z1

(
J2k

s ⊕ 0
)
− ATkZ3

(
0⊕ J2k

1 Γ−1
k J2k

1

)
− Z4

(
0⊕ Γ−1

k J2k

1

)]
Z−1

1 .(3.18)

By (3.11) and (3.17), we have

‖Qk −X+‖ = O
(
2−k

)
.

(c) Substituting Lk and Mk of (3.3) and W of (3.12) into (3.10), we have

W2 − PkW1 = AkW1

(
J2k

s ⊕ J2k

1

)
,(3.19)

(W4 − PkW3)
((
JHs
)2k

⊕ I
)

= AkW1 (0⊕ Γk) +AkW3

(
I ⊕ J2k

1

)
.(3.20)

Let X− = W2W
−1
1 . As before, postmultiplying (3.20) by (0⊕Γ−1

k J2k

1 )W−1
1 and using

(3.19), we get

X− − Pk
[
I −W3

(
0⊕ Γ−1

k J2k

1

)
W−1

1

]
=
[
W4

(
0⊕ Γ−1

k J2k

1

)
+AkW1

(
J2k

s ⊕ 0
)
−AkW3

(
0⊕ J2k

1 Γ−1
k J2k

1

)]
W−1

1 .(3.21)

By (3.11) and the result of (a), we have

‖X− − Pk‖ = O
(
2−k

)
.

From (3.9) we get[
0 I
AT 0

] [
I
X−

]
=
[
A 0
Q −I

] [
I
X−

]
R−,

where R− = W1(Js ⊕ J1)W−1
1 . It follows that

X− = AR−, AT = (Q−X−)R−.
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When A is invertible, the matrices X−1
+ A,R−, X− are all invertible and we obtain

X− +ATX−1
− A = Q.

Moreover, the eigenvalues of X−1
− A are the reciprocals of the eigenvalues of R− (and,

thus, X−1
+ A).

(d) From (3.13) and (3.15), we get

−PkZ1

(
J2k

s ⊕ J2k

1

)
= AkZ1 − Z2

(
J2k

s ⊕ J2k

1

)
,

QkZ1

(
J2k

s ⊕ J2k

1

)
= Z2

(
J2k

s ⊕ J2k

1

)
+ATk Z1

(
J2·2k

s ⊕ J2·2k

1

)
.

This implies that

(Qk − Pk)Z1

[
0
Im

]
= AkZ1

[
0

J−2k

1

]
+ATkZ1

[
0
J2k

1

]
.(3.22)

Since 0 ≤ Pk ≤ Pk+1 ≤ Q, the sequence Pk converges even if W1 is singular. Let
lim(Qk − Pk) = R∗. It follows from (3.22) and the result of (a) that

R∗Z1

[
0
Im

]
= 0.

Thus, R∗ is singular.
The most important conclusion in Theorem 3.2 is that the sequence Qk from the

doubling algorithm converges to X+ at least linearly with rate 1/2, regardless of the
values of mj (j = 1, 2, . . . , r). This is in sharp contrast with the behavior of Newton’s
method. The NME (3.1) is a special case of the discrete algebraic Riccati equation
studied in [12]. It is conjectured in [12] that the convergence of Newton’s method
is linear with rate 1/ q

√
2, where q = max1≤j≤rmj . This conjecture is confirmed in

numerical experiments on (3.1) with A being a q × q Jordan block with eigenvalue 1
and Q = I +ATA, for small values of q. We know from [13] that X+ = I in all those
examples. Newton’s method is given in [13, Algorithm 3.3].

4. A quadratic matrix equation from quasi-birth-death problems. A
discrete-time quasi-birth-death (QBD) process is a Markov chain with state space
{(i, j) | i ≥ 0, 1 ≤ j ≤ n}, and with a transition probability matrix of the form

P =

⎡
⎢⎢⎢⎢⎢⎣

B0 B1 0 0 · · ·
A0 A1 A2 0 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ ,

where B0, B1, A0, A1, and A2 are n×n nonnegative matrices such that P is stochastic.
In particular, (A0 +A1 +A2)e = e, where e = (1, 1, . . . , 1)T .

We make the standard assumption that the matrix P and the matrix A = A0 +
A1 + A2 are both irreducible. Thus, A0 �= 0 and A2 �= 0. Moreover, there exists
a unique positive vector α with αT e = 1 and αTA = αT . The QBD is positive
recurrent if αTA0e > αTA2e, transient if αTA0e < αTA2e, and null recurrent if
αTA0e = αTA2e.
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The minimal nonnegative solution G of the matrix equation

(4.1) G = A0 +A1G+A2G
2

plays an important role in the study of the QBD process (see [32]). We will also need
the dual equation

(4.2) F = A2 +A1F +A0F
2,

and we let F be its minimal nonnegative solution. It is well known (see [32], for exam-
ple) that if the QBD is positive recurrent, then G is stochastic and F is substochastic
with spectral radius ρ(F ) < 1; if the QBD is transient, then F is stochastic and G
is substochastic with ρ(G) < 1; if the QBD is null recurrent, then G and F are both
stochastic.

The Latouche–Ramaswami (LR) algorithm [31] and the cyclic reduction (CR)
algorithm [5] are both efficient iterative methods for finding the minimal solution G.
The convergence of these two algorithms is quadratic for positive recurrent and tran-
sient QBDs. A convergence analysis has been performed in [15] for the LR algorithm
in the null recurrent case under two additional assumptions. The first assumption is
that λ = 1 is a simple eigenvalue of G and F and there are no other eigenvalues of
G or F on the unit circle; the second assumption is made under the first assumption
and is more technical. The convergence rate for the LR algorithm is the same in view
of the relationship between CR and LR, given in [3].

We can also use the doubling algorithm (SDA-1 or SDA-2) to find the minimal
solution G. We will choose to use SDA-2 since it is less expensive. Moreover, there is a
close connection between the CR algorithm and SDA-2. In this section we determine
the convergence rate of SDA-2 in the null recurrent case, without the two additional
assumptions in [15]. The convergence rate for the CR (or LR) algorithm in the null
recurrent case is the same in view of their connections to SDA-2. As compared to
[15], the result here is more general and the analysis here is much simpler.

We mention that a doubling algorithm is also derived in [26] for finding the
minimal nonnegative solution of a polynomial equation that is more general than
(4.1). The algorithm there is different from SDA-2 when applied to (4.1).

The CR algorithm for (4.1), or for −A0 +(I−A1)G−A2G
2 = 0, is the following:

Algorithm 4.1. Set T0 = A0, U0 = I −A1, V0 = A2, S0 = I −A1.
For k = 0, 1, . . . , compute

Tk+1 = TkU
−1
k Tk,

Uk+1 = Uk − TkU−1
k Vk − VkU−1

k Tk,

Vk+1 = VkU
−1
k Vk,

Sk+1 = Sk − VkU−1
k Tk.

The above CR algorithm is as presented in [3], but with one minor change: if
we follow [3] exactly, Tk and Vk here would have to be replaced by −Tk and −Vk for
k ≥ 0.

The following result is known from the discussions in [4] and [32].
Theorem 4.1. The sequences {Tk}, {Uk}, {Vk}, {Sk} in Algorithm 4.1 are well

defined. For each k ≥ 0, Tk and Vk are nonnegative, and Ukand Sk are nonsingular
M -matrices. When the QBD is positive recurrent or transient, the sequence {Sk}
converges quadratically to a nonsingular M -matrix S∗ and S−1

∗ A0 = G.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

236 CHIANG, CHU, GUO, HUANG, LIN, AND XU

We note that Algorithm 4.1 may break down if we do not assume the irreducibility
of the transition matrix P . As an example, we consider

A0 =
[

0 0
1 0

]
, A1 = 0, A2 =

[
0 1
0 0

]
.

It is easy to see that P is not irreducible, although A0 +A1 +A2 is. For this example,
U1 = 0 in Algorithm 4.1, so the algorithm breaks down. The LR algorithm also breaks
down for this example.

To use the doubling algorithm to find G, we may rewrite (4.1) as
[

0 I
A0 A1 − I

] [
I
G

]
=
[
I 0
0 −A2

] [
I
G

]
G.

Multiplying the second block row by −(I −A1)−1 and eliminating the I in the (1, 2)
block of the leftmost matrix, we get

[
(I −A1)−1A0 0
−(I −A1)−1A0 I

] [
I
G

]
=
[
I −(I −A1)−1A2

0 (I −A1)−1A2

] [
I
G

]
G.

We can then use SDA-1 to find the matrix G. However, the less expensive SDA-2 can
also be used if we rewrite (4.1) as

(4.3) L0

[
I

A2G

]
= M0

[
I

A2G

]
G,

where

L0 =
[

0 I
A0 0

]
, M0 =

[
A2 0

I −A1 −I
]
.

It is easily seen that L0 − λM0 is a linearization of −A0 + λ(I −A1)− λ2A2.
If we use SDA-1, the matrix G can be approximated directly by a sequence gen-

erated by SDA-1. One may have some concern about the SDA-2 approach: how can
one get G if A2G is obtained and A2 is singular? This concern will turn out to be
unnecessary.

In this section SDA-2 is Algorithm 2.2 with the initialization

(4.4) T0 = A0, Q0 = I −A1, P0 = 0, V0 = A2.

The algorithm generates the sequence {Lk,Mk} (see (2.7)) if no breakdown occurs.
It is readily seen that Algorithm 4.1 is recovered from SDA-2 by letting Uk =

Qk − Pk and Sk = S0 − Pk. By Theorem 4.1, Qk − Pk = Uk are nonsingular M -
matrices for all k ≥ 0. So SDA-2 is also well defined.

In view of (2.9) we have for each k ≥ 0

Lk

[
I

A2G

]
= Mk

[
I

A2G

]
G2k

.

So

(4.5) −Pk +A2G = VkG
2k

, Tk = QkG
2k −A2G

2k+1.
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Similarly we have

L̂0

[
I

A0F

]
= M̂0

[
I

A0F

]
F,

where

L̂0 =
[

0 I
V0 0

]
, M̂0 =

[
T0 0
Q0 −I

]
.

It is easily seen that M̂0 − λL̂0 is also a linearization of −A0 + λ(I −A1)− λ2A2.
For each k ≥ 0 we now have

L̂k

[
I

A0F

]
= M̂k

[
I

A0F

]
F 2k

,

where

L̂k =
[ −P̂k I

Vk 0

]
, M̂k =

[
Tk 0
Q̂k −I

]

with

(4.6) P̂k = I −A1 −Qk, Q̂k = I −A1 − Pk.
So

(4.7) −P̂k +A0F = TkF
2k

, Vk = Q̂kF
2k −A0F

2k+1.

We mentioned before that the Sk in Algorithm 4.1 satisfies Sk = S0 − Pk =
I −A1 − Pk. So we have Q̂k = Sk.

When the QBD is positive recurrent or transient, we know by Theorem 4.1 that
Q̂k converges quadratically to a nonsingular M -matrix Q̂∗ and Q̂−1∗ A0 = G. Here we
give a quick proof using the doubling algorithm. By the first equation in (4.5) and
the second equation in (4.6), we have

Q̂k − I +A1 +A2G = VkG
2k

.

Eliminating Vk using the second equation in (4.7) gives

Q̂k

(
I − F 2k

G2k
)

= I −A1 −A2G−A0F
2k+1G2k

.

It follows that

lim sup
k→∞

2k

√∥∥∥Q̂k − (I −A1 −A2G)
∥∥∥ ≤ ρ(F )ρ(G) < 1.

Since Q̂∗ = I − A1 − A2G is a nonsingular M -matrix and A0 = Q̂∗G, we have
G = Q̂−1∗ A0. Similarly, Qk converges quadratically to the nonsingular M -matrix
Q∗ = I −A1 −A0F and F = Q−1

∗ A2.
Our main purpose of this section, however, is to determine the convergence rate

of SDA-2 for the null recurrent case.
We start with a review of an important result about the spectral properties of

the quadratic pencil −A0 + λ(I −A1)− λ2A2 and of the matrices G and F when the
QBD is null recurrent. See Proposition 14 and Theorem 4 of [10] and Theorem 4.10
of [4].
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Theorem 4.2. Let the QBD be null recurrent. Then
(a) For some integer r ≥ 1 the quadratic pencil −A0 + λ(I − A1) − λ2A2 has

n − r eigenvalues inside the unit circle, n − r eigenvalues outside the unit
circle (which include eigenvalues at infinity), and 2r eigenvalues on the unit
circle, which are the rth roots of unity, each with multiplicity two.

(b) The partial multiplicity of each eigenvalue on the unit circle is exactly two.
(c) The eigenvalues of G are the n − r eigenvalues of the pencil inside the unit

circle plus the r simple eigenvalues at the rth roots of unity, the eigenvalues
of F are the reciprocals of the n− r eigenvalues of the pencil outside the unit
circle plus the r simple eigenvalues at the rth roots of unity.

Using the Kronecker form for matrix pairs, we have nonsingular matrices V and
Z such that

VM0Z =
[
In 0
0 J2 ⊕ Ir

]
≡ JM ,(4.8)

V L0Z =
[
J1 ⊕Dr 0⊕ Ir

0 In−r ⊕Dr

]
≡ JL,(4.9)

where J1 and J2 are (n − r) × (n − r) matrices consisting of the Jordan blocks with
diagonal elements inside the unit circle, and Dr is a r × r diagonal matrix with the
rth roots of unity on the diagonal.

Similarly, we have nonsingular matrices T and W such that

T L̂0W =
[
In 0
0 J2 ⊕ Ir

]
= JM ,(4.10)

TM̂0W =
[
J1 ⊕Dr 0
0⊕ Ir In−r ⊕Dr

]
≡ ĴL.(4.11)

We have for each k ≥ 0

(4.12) MkZJ
2k

L = LkZJ
2k

M , L̂kWĴ2k

L = M̂kWJ2k

M .

Let Z and W be partitioned as in (3.12). From (4.8) and (4.9) we have

L0

[
Z1

Z2

]
= M0

[
Z1

Z2

]
(J1 ⊕Dr).

Comparing this with (4.3) and using Theorem 4.2, we know that Z1 is nonsingular
and Z2Z

−1
1 = A2G. Similarly, W3 is nonsingular and W4W

−1
3 = A0F .

Using block matrix multiplication for (4.12), we have

VkZ1

(
J2k

1 ⊕D2k

r

)
= −PkZ1 + Z2,(4.13)

(QkZ1 − Z2)
(
J2k

1 ⊕D2k

r

)
= TkZ1,(4.14)

VkZ1

(
0⊕ 2kD2k−1

r

)
+ VkZ3

(
I ⊕D2k

r

)
= (−PkZ3 + Z4)

(
J2k

2 ⊕ I
)
,(4.15)

(QkZ1 − Z2)
(
0⊕ 2kD2k−1

r

)
+ (QkZ3 − Z4)

(
I ⊕D2k

r

)
= TkZ3

(
J2k

2 ⊕ I
)
,(4.16) (

−P̂kW1 +W2

)(
J2k

1 ⊕D2k

r

)
+
(
−P̂kW3 +W4

)(
0⊕ 2kD2k−1

r

)
= TkW1,(4.17)

VkW1

(
J2k

1 ⊕D2k

r

)
+ VkW3

(
0⊕ 2kD2k−1

r

)
= Q̂kW1 −W2,(4.18)
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(
−P̂kW3 +W4)(I ⊕D2k

r

)
= TkW3

(
J2k

2 ⊕ I
)
,(4.19)

VkW3

(
I ⊕D2k

r

)
=
(
Q̂kW3 −W4

)(
J2k

2 ⊕ I
)
.(4.20)

Postmultiplying (4.16) by 0⊕ 2−kDr and subtracting the result from (4.14), we get
(4.21)
Tk
(
Z1 − Z3

(
0⊕ 2−kDr

))
= (QkZ1−Z2)

(
J2k

1 ⊕ 0
)
− (QkZ3−Z4)

(
0⊕ 2−kD2k+1

r

)
.

By (4.19) we have

(4.22) −P̂k = −W4W
−1
3 + TkW3

(
J2k

2 ⊕D−2k

r

)
W−1

3 .

Thus, in view of (4.6),

(4.23) Qk = I −A1 −W4W
−1
3 + TkW3

(
J2k

2 ⊕D−2k

r

)
W−1

3 .

Inserting (4.23) into (4.21) and letting Q∗ = I −A1 −W4W
−1
3 , we get

Tk

[
Z1 − Z3

(
0⊕ 2−kDr

)−W3

(
J2k

2 ⊕D−2k

r

)
W−1

3

(
Z1

(
J2k

1 ⊕ 0
)
− Z3

(
0⊕ 2−kD2k+1

r

))]
= (Q∗Z1 − Z2)

(
J2k

1 ⊕ 0
)
− (Q∗Z3 − Z4)

(
0⊕ 2−kD2k+1

r

)
,

from which it follows that

‖Tk‖ = O
(
2−k

)
.

It then follows from (4.23) that
∥∥Qk − (I −A1 −W4W

−1
3

)∥∥ = O
(
2−k

)
.

Postmultiplying (4.15) by 0⊕ 2−kDr and subtracting the result from (4.13), we get
(4.24)
−PkZ1+Z2−(−PkZ3+Z4)

(
0⊕ 2−kDr

)
= Vk

(
Z1

(
J2k

1 ⊕ 0
)
− Z3

(
0⊕ 2−kD2k+1

r

))
.

By (4.20),

(4.25) Vk =
(
Q̂kW3 −W4

)(
J2k

2 ⊕D−2k

r

)
W−1

3 .

Inserting (4.25) into (4.24) and using Q̂k = I −A1 − Pk, we get

−PkZ1 + Z2 − (−PkZ3 + Z4)
(
0⊕ 2−kDr

)
= ((I −A1 − Pk)W3 −W4)Ck

for some Ck with ‖Ck‖ = O(2−k). Thus,

Pk
(
Z1 − Z3

(
0⊕ 2−kDr

)−W3Ck
)

= Z2 − Z4

(
0⊕ 2−kDr

)− ((I −A1)W3 −W4)Ck.

It follows that
∥∥Pk − Z2Z

−1
1

∥∥ = O
(
2−k

)
.
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Postmultiplying (4.18) by 0⊕ 2−kD1−2k

r , we get

(4.26) VkW1

(
0⊕ 2−kDr

)
+ VkW3(0 ⊕ I) =

(
Q̂kW1 −W2

)(
0⊕ 2−kD1−2k

r

)
.

Postmultiplying (4.20) by I ⊕ 0, we get

(4.27) VkW3(I ⊕ 0) =
(
Q̂kW3 −W4

)(
J2k

2 ⊕ 0
)
.

Adding (4.26) and (4.27) gives

Vk
(
W3 +W1

(
0⊕ 2−kDr

))
=
(
Q̂kW1 −W2

)(
0⊕ 2−kD1−2k

r

)
+
(
Q̂kW3 −W4

)(
J2k

2 ⊕ 0
)
.

It follows that

‖Vk‖ = O
(
2−k

)
,

since W3 is nonsingular and {Q̂k} has been shown to be bounded.
In summary, we have proved the following result.
Theorem 4.3. Let the QBD be null recurrent. Then for SDA-2sf we have

‖Vk‖ = O
(
2−k

)
, ‖Tk‖ = O

(
2−k

)
,

‖Qk − (I −A1 − A0F )‖ = O
(
2−k

)
, ‖Pk −A2G‖ = O

(
2−k

)
.

Corollary 4.4. Let limQk = Q∗ and limPk = P∗. Then Q∗ is nonsingular
and Q−1

∗ A2 = F , I−A1−P∗ is nonsingular and (I−A1−P∗)−1A0 = G. The matrix
Q∗ − P∗ is a singular M -matrix.

Proof. By Theorem 4.3, Q∗ = I−A1−A0F and I−A1−P∗ = I−A1−A2G. These
two matrices are known to be nonsingular [32]. Since Q∗F = (I −A1−A0F )F = A2,
Q−1

∗ A2 = F . Since (I−A1−P∗)G = (I−A1−A2G)G = A0, (I−A1−P∗)−1A0 = G.
Q∗ − P∗ is a singular M -matrix since

(Q∗ − P∗)e = (I − A1 −A0F −A2G)e = e− (A1 +A0 +A2)e = 0.

This completes the proof.
When the QBD is null recurrent, the interpretation of the CR algorithm as a

doubling algorithm has allowed us to show that the minimal solutions G and F can
be found by the CR algorithm (or the closely related LR algorithm) simultaneously
and with at least linear convergence with rate 1/2. It is important to note that we
no longer need the assumption that the matrices G and F have no eigenvalues on the
unit circle other than the simple eigenvalue 1. With that assumption, one would use
the shift technique as studied in [25], [16], and [4], and apply the CR algorithm or the
LR algorithm to the shifted equation. When G and F have more than one eigenvalue
on the unit circle, the shift technique is not helpful and the CR algorithm or the LR
algorithm will be applied directly to the equation (4.1).

5. A nonsymmetric algebraic Riccati equation. In this section we consider
the nonsymmetric algebraic Riccati equation (NARE)

(5.1) XCX −XD−AX +B = 0,
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where A,B,C,D are real matrices of sizes m×m,m× n, n×m,n× n, respectively,
and the matrix

(5.2) K =
[

D −C
−B A

]

is a nonsingular M -matrix or an irreducible singular M -matrix. The NARE arises
in the study of Wiener–Hopf factorization of Markov chains [37], and it includes the
NARE arising from transport theory [29, 30]. We will also need the dual equation of
(5.1)

(5.3) Y BY − Y A−DY + C = 0,

which is in the same form of (5.1).
We will use the elementwise order for matrices: for any matrices A = [aij ], B =

[bij ] ∈ Rm×n, we write A ≥ B(A > B) if aij ≥ bij(aij > bij) for all i, j.
A basic result about (5.1) and (5.3) is the following [14].
Theorem 5.1. If the matrix K in (5.2) is a nonsingular M -matrix or an irre-

ducible singular M -matrix, then the NARE (5.1) and the NARE (5.3) have minimal
nonnegative solutions X and Y , respectively. Moreover, D − CX and A − BY are
M -matrices.

The minimal nonnegative solution of the NARE is the solution of practical inter-
est. There have been a number of methods for finding this solution. The methods
and their analyses can be found in [2, 14, 18, 20, 21, 23, 24, 36]. Among the iterative
methods, the doubling algorithm proposed in [24] stands out for its overall efficiency.
The algorithm is analyzed in [24] for the case when K is a nonsingular M -matrix, and
is analyzed in [21] for the case when K is an irreducible singular M -matrix. When
K is an irreducible singular M -matrix, we let [vT1 , vT2 ]T > 0 and [uT1 , uT2 ]T > 0 be
the right and the left null vectors of K in (5.2), respectively. If uT1 v1 �= uT2 v2, then
the convergence of the doubling algorithm is still quadratic; if uT1 v1 = uT2 v2, then the
convergence is observed to be linear with rate 1/2 (see [21]). The latter case will be
referred to as the critical case for the NARE. For this critical case, the convergence
of Newton’s method has been shown to at least linear with rate 1/2 [14, 20, 23]. We
will reach the same conclusion for the doubling algorithm.

We start with a brief review of the doubling algorithm in [24]. Let

(5.4) H =
[
D −C
B −A

]
,

and

(5.5) R = D − CX, S = A−BY,
where X and Y are given in Theorem 5.1. Then the NAREs (5.1) and (5.3) can be
rewritten as

(5.6) H

[
In
X

]
=
[
In
X

]
R

and

(5.7) H

[
Y
Im

]
=
[
Y
Im

]
(−S).
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Applying the Cayley transform to (5.6) with a scalar γ > 0 we have

(H − γI)
[
In
X

]
= (H + γI)

[
In
X

]
Rγ ,

where Rγ = (R + γIn)−1(R − γIn). Premultiplying the above equation by a proper
nonsingular matrix gives

(5.8) M0

[
In
X

]
= L0

[
In
X

]
Rγ .

Here L0 and M0 are given by (2.1) with

(5.9)
E0 = In − 2γV −1

γ , F0 = Im − 2γW−1
γ ,

G0 = 2γD−1
γ CW−1

γ , H0 = 2γW−1
γ BD−1

γ ,

where

(5.10)
Aγ = A+ γIm, Dγ = D + γIn,

Wγ = Aγ −BD−1
γ C, Vγ = Dγ − CA−1

γ B.

Similarly,

(5.11) M0

[
Y
Im

]
Sγ = L0

[
Y
Im

]
,

where Sγ = (S + γIm)−1(S − γIm).
In this section SDA-1 denotes Algorithm 2.1 with E0, F0, G0, H0 given by (5.9).
The following result from [21] improves the original results given in [24].
Theorem 5.2. Let the matrix K in (5.2) be a nonsingular M -matrix or an

irreducible singular M -matrix, and X,Y ≥ 0 be the minimal nonnegative solutions of
the NAREs (5.1) and (5.3), respectively. If γ satisfies

(5.12) γ ≥ γ0 ≡ max
{

max
1≤i≤m

aii, max
1≤i≤n

dii

}
,

where aii and dii are the diagonal entries of A and D, respectively, then the sequence
{Ek, Fk, Hk, Gk} in SDA-1 is well defined. Moreover, we have

(a) E0, F0 < 0 and Ek, Fk > 0 for k ≥ 1;
(b) For k ≥ 0, 0 ≤ Hk < Hk+1 < X, 0 ≤ Gk < Gk+1 < Y ;
(c) For k ≥ 0, Im −HkGk and In −GkHk are nonsingular M-matrices.
From now on we assume that K in (5.2) is an irreducible singular M -matrix, and

consider the critical case of the NARE (5.1). We always assume that γ satisfies (5.12).
The Kronecker form for the pencil (M0, L0) can be determined with the help of

the following result [14], where C− and C+ denote the open left and the open right
half planes, respectively.

Theorem 5.3. For the critical case of the NARE (5.1), the matrix H has n− 1
eigenvalues in C+, m−1 eigenvalues in C−, and two zero eigenvalues with a quadratic
divisor. Moreover, R and S in (5.5) are irreducible singular M-matrices (so each of
them has a simple eigenvalue 0 and the remaining eigenvalues are in C+).
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In view of Theorem 5.3, the properties of the Cayley transform, and the process
leading to (5.8) and (5.11), we know that there are nonsingular matrices V and Z
such that

V L0Z =
[

In 0n,m
0m,n J2,s ⊕ [1]

]
≡ JL,(5.13)

VM0Z =
[

J1 Γ
0m,n Im−1 ⊕ [−1]

]
≡ JM ,(5.14)

in which

(5.15) J1 = J1,s⊕ [−1] s∼ Rγ , J2 ≡ J2,s⊕ [−1] s∼ Sγ , Γ = 0n−1,m−1⊕ [1] ≡ eneTm,

where ρ(J1,s) < 1, ρ(J2,s) < 1, and “ s∼” denotes the similarity transformation. Since
JLJM = JMJL, for the matrices Lk and Mk given by (2.2) we have by (2.11)

(5.16) MkZJ
2k

L = LkZJ
2k

M .

On the other hand, there are nonsingular matrices T and W such that

TL0W =
[

J2 Γ̂
0n,m In−1 ⊕ [−1]

]
≡ ĴL,(5.17)

TM0W =
[

Im 0m,n
0n,m J1,s ⊕ [1]

]
≡ ĴM ,(5.18)

where Γ̂ = eme
T
n . We now have

(5.19) LkWĴ2k

M = MkWĴ2k

L .

The following result determines the convergence rate of SDA-1 in the critical case.
Theorem 5.4. Let X,Y ≥ 0 be the minimal nonnegative solutions of the NAREs

(5.1) and (5.3), respectively, and let {Ek, Fk, Gk, Hk} be generated by SDA-1. Then
for the critical case

‖Ek‖ = O
(
2−k

)
, ‖Fk‖ = O

(
2−k

)
, ‖Hk−X‖ = O

(
2−k

)
, ‖Gk−Y ‖ = O

(
2−k

)
.

Proof. Partition the matrices Z and W as

(5.20) Z =
[
Z1 Z3

Z2 Z4

]
, W =

[
W1 W3

W2 W4

]
,

where Z1,W3 ∈ Rn×n, and Z4,W2 ∈ Rm×m. Then from (5.13) and (5.14), and from
(5.17) and (5.18), we have

(5.21) M0

[
Z1

Z2

]
= L0

[
Z1

Z2

]
J1, M0

[
W1

W2

]
J2 = L0

[
W1

W2

]
.

Comparing (5.21) with (5.8) and (5.11), and using (5.15), we know that Z1 and W2

are invertible and X = Z2Z
−1
1 , Y = W1W

−1
2 .

Note that for k ≥ 1 we have

J2k

L =
[
In 0
0 J2k

2

]
, J2k

M =
[
J2k

1 Γk
0 Im

]
, Ĵ2k

M =
[
Im 0
0 J2k

1

]
, Ĵ2k

L =
[
J2k

2 Γ̂k
0 In

]
,
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where Γk = −2kΓ = −2keneTm, Γ̂k = −2kΓ̂ = −2kemeTn . It follows from (5.16) and
(5.19) that for k ≥ 1

EkZ1 = (Z1 −GkZ2)J2k

1 ,(5.22)

EkZ3J
2k

2 = (Z1 −GkZ2)Γk + (Z3 −GkZ4),(5.23)

−HkZ1 + Z2 = FkZ2J
2k

1 ,(5.24)

(−HkZ3 + Z4)J2k

2 = FkZ2Γk + FkZ4,(5.25)

W1 −GkW2 = EkW1J
2k

2 ,(5.26)

(W3 −GkW4)J2k

1 = EkW1Γ̂k + EkW3,(5.27)

FkW2 = (W2 −HkW1)J2k

2 ,(5.28)

FkW4J
2k

1 = (W2 −HkW1)Γ̂k + (W4 −HkW3).(5.29)

Postmultiplying (5.29) by Γ̂†
k = −2−kΓ, the Moore–Penrose pseudo inverse of Γ̂k,

subtracting the result from (5.28), and noting that Γ̂kΓ̂
†
k = 0m−1 ⊕ [1], we get

(5.30) Fk

(
W2 + 2−kW4J

2k

1 Γ
)

= (W2 −HkW1)
(
J2k

2,s ⊕ [0]
)

+ 2−k(W4 −HkW3)Γ.

Since W2 is invertible and {Hk} is bounded by Theorem 5.2(b), it follows from (5.30)
that ‖Fk‖ = O(2−k). It then follows from (5.24) that ‖Hk −X‖ = O(2−k).

Similarly, postmultiplying (5.23) by Γ†
k = −2−kΓ̂, subtracting the result from

(5.22), and noting that ΓkΓ
†
k = 0n−1 ⊕ [1], we get

Ek

(
Z1 + 2−kZ3J

2k

2 Γ̂
)

= (Z1 −GkZ2)
(
J2k

1,s ⊕ [0]
)

+ 2−k(Z3 −GkZ4)Γ̂.(5.31)

Since Z1 is invertible and {Gk} is bounded by Theorem 5.2(b), it follows from (5.31)
that ‖Ek‖ = O(2−k). It then follows from (5.26) that ‖Gk − Y ‖ = O(2−k).

We note that lim(I −GkHk) = I − Y X and lim(I −HkGk) = I −XY are both
singular M -matrices (see [21]).

The critical case we have considered is a singular case, and the singularity can
be removed by applying a proper shift technique. Indeed, a shift technique has been
introduced in [21] and SDA-1 applied to the shifted NARE has quadratic convergence
if no breakdown happens. However, whether breakdown is possible remains an open
problem in general, although some partial results have been obtained in [21].

Since K is an irreducible singular M -matrix, we may assume without loss of
generality that Ke = 0. In this case, one can transform the NARE to a quadratic
matrix equation of the type in section 4, but with (m + n) × (m + n) matrices in
the equation (see [36]). One can then apply CR and LR to the transformed equation
(see [2, 18]). A specific shift technique (following [25]) is introduced in [18] to the
transformed equation, and quadratic convergence is recovered for the LR algorithm
(thus, also for the CR algorithm) if no breakdown happens. It has been shown in
[20] that the LR algorithm is indeed well-defined when the shift technique is used.
However, when m = n, the computational work required in each iteration is nearly
twice that for SDA-1, due to the dimension expansion from n to 2n. If we use the
shift technique in [18] with the CR approach in [2], then no breakdown happens and
the complexity is down to 34n3 flops each iteration when m = n.

Although it is preferable to use a shift technique for the critical case of the NARE
(with an irreducible singular M -matrix K), our convergence results in Theorem 5.4
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still provide some insights about the convergence behavior of SDA-1 for nearby NAREs
with a nonsingular M -matrix K (where the shift technique is no longer appplicable).
The exact solution of a singular NARE is quite sensitive to the input data in the
NARE (see [20]). For the singular NARE and nearby NAREs, it would be reasonable
to stop the iteration when ‖Hk −Hk−1‖ < ε1/2, where ε is the machine epsilon, and
take Hk as an approximation to the exact solution X . Further iterations for SDA-1
may not be able to improve the accuracy significantly in view of the perturbation
behavior of X and the fact that I −GkHk and I −HkGk are nearly singular for large
k. So we are mainly interested in the behavior of SDA-1 for iterations up to the point
where ‖Hk −Hk−1‖ < ε1/2 (assuming this is achievable). And up to that point, the
behavior of SDA-1 for those nearby NAREs would be very much similar to that of
SDA-1 for the singular NARE. We use one example to illustrate this point.

Example 5.1. Let T be a 16 × 16 doubly stochastic matrix given by T =
1

2056magic(16), where magic is the Matlab function that generates magic squares.
Let K = I − T , and let the 8 × 8 matrices A,B,C,D be determined through (5.2).
The matrix K is an irreducible singular M -matrix, and we have the critical case for
the NARE (5.1). We take γ to be the largest diagonal entry of K (which is the last
diagonal entry of K) and apply SDA-1. We find that ‖Hk−Hk−1‖ < 10−7 is satisfied
for k = 24. The convergence rate of Hk − X is determined through that of Fk (see
the proof of Theorem 5.4). We find that the values of k

√‖Fk‖∞ are between 0.4924
and 0.5001 for k = 4 : 24.

We then increase the (1,1) entry of K by 10−12. So K is now a nonsingular
M -matrix. The matrix D is changed accordingly. The change in K does not change
the largest diagonal entry of K. So we apply SDA-1 to the new NARE with the same
γ. We find that ‖Hk − Hk−1‖ < 10−7 is satisfied for k = 23, and that the values
of k
√‖Fk‖∞ are between 0.4924 and 0.5000 for k = 4 : 21 (the values are 0.4855

and 0.4570 for k = 22 and k = 23, respectively). Thus, the (nonterminal and more
important) convergence behavior of SDA-1 for this nearby NARE is largely dictated
by our theoretical results in Theorem 5.4.

6. Conclusion. We have determined the convergence rate of the doubling algo-
rithm in the critical (or singular) case for three different nonlinear matrix equations. It
is possible to apply the techniques we reviewed in section 2 to other nonlinear matrix
equations. Through this study, we have also gained more insights for the convergence
behavior for the doubling algorithm for nearly singular cases.
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A NEWTON–GRASSMANN METHOD FOR COMPUTING THE
BEST MULTILINEAR RANK-(r1, r2, r3) APPROXIMATION OF A

TENSOR∗

LARS ELDÉN† AND BERKANT SAVAS†

Abstract. We derive a Newton method for computing the best rank-(r1, r2, r3) approximation
of a given J × K × L tensor A. The problem is formulated as an approximation problem on a
product of Grassmann manifolds. Incorporating the manifold structure into Newton’s method en-
sures that all iterates generated by the algorithm are points on the Grassmann manifolds. We also
introduce a consistent notation for matricizing a tensor, for contracted tensor products and some
tensor-algebraic manipulations, which simplify the derivation of the Newton equations and enable
straightforward algorithmic implementation. Experiments show a quadratic convergence rate for the
Newton–Grassmann algorithm.

Key words. tensor, multilinear, rank, approximation, Grassmann manifold, Newton

AMS subject classifications. 65F99, 65K10, 15A69, 14M15

DOI. 10.1137/070688316

1. Introduction. The problem of approximating a tensor A ∈ RJ×K×L by
another tensor B of equal dimensions but of lower rank

min
B
‖A− B‖

occurs, e.g., in signal processing [6, 4] and pattern classification [27]. Throughout
the paper, we will use the Frobenius norm (we will state the precise meaning of this
and other concepts in section 2). There is no unique definition of the rank of a
tensor (as opposed to the case of matrices); see, e.g., [7]. Here we will deal with the
concept of multilinear rank, defined by Hitchcock [12] (see also [6, 7]) and assume that
rank(B) = (r1, r2, r3), which means that the tensor B can be written as a product of
a core tensor S and three matrices,

(1.1) B = (X,Y, Z) · S, bijk =
∑
λ,μ,ν

xiλyjμzkνsλμν ,

with matrices of full column rank, X ∈ RJ×r1 , Y ∈ RK×r2 , and Z ∈ RL×r3 . The
tensor S has dimensions r1× r2 × r3. It is no restriction to assume that X , Y , and Z
have orthonormal columns. Thus, we want to solve the problem

min
S,X,Y,Z

‖A − (X,Y, Z) · S‖ subject to XTX = I, Y TY = I, ZTZ = I,(1.2)

which is the problem of computing a Tucker decomposition [24, 25] approximating the
tensor. The approximation problem is illustrated in Figure 1.1.

Unlike the matrix case, there is no known closed-form solution of the approxima-
tion problem (1.2). It can be shown that the minimization problem is well defined [7,
Corollary 4.5].
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A S
X

Y T

Z
T

≈

Fig. 1.1. The approximation of a tensor A by another tensor B = (X, Y, Z) · S of lower
multilinear rank.

Let A ∈ RI1×···×IN be an order-N tensor (or N -tensor for short). We will restrict
ourselves to considering the approximation problem (1.2) for a 3-tensor A in this
paper. The main contribution is the derivation of a Newton method for the solution
of (1.2). The constraints on the unknown matrices X , Y , and Z are taken into
account by formulating the problem as an optimization problem on a product of three
Grassmann manifolds. To be able to differentiate the objective function and derive
the Newton equations without extensive index manipulation (as is sometimes used in
tensor algebra), we develop an algebraic framework based on tensor contractions.
Within this framework, it is also straightforward to generalize the derivations to
tensors of order four and higher, and we sketch this in section 4.6.

In view of the lack of a standard terminology and notation in the field of tensor
computations, we define the concepts used in this paper in section 2. There we
also propose a “canonical” tensor matricization, contracted tensor products, and a
few tensor-algebraic identities. The optimization problem on the product of three
Grassmann manifolds is formulated in section 3, and the Newton–Grassmann (NG)
method is derived in section 4.2. In section 5, the numerical implementation of the
method is briefly described, and some numerical experiments are reported.

2. Tensor concepts and identities. For simplicity of notation and presenta-
tion, we will mostly, in this and the following sections, present the basic concepts using
examples in terms of 3-tensors or 5-tensors. Some more general definitions are given
in [5, 2, 3, 7]. We will use Roman letters written with a calligraphic font to denote
tensors, capital Roman letters to denote matrices (2-tensors), and lowercase Roman
letters to denote vectors. However, we will also use Roman letters in the middle of
the alphabet, J,K,L, . . . , and j, k, l, . . . , to denote tensor dimensions and subscripts.

Let A denote a tensor in R
J×K×L. The three “dimensions” of the tensor are

referred to as modes. In the approximation problem (1.2), we will not consider the
tensor as a multilinear operator,1 and therefore, there is no need to make a distinction
between contravariant and covariant tensor modes [16]2 in the tensor notation. We
will use both standard subscripts and “MATLAB-like” notation: a particular tensor
element will be denoted in two equivalent ways:

A(j, k, l) = ajkl.

We will refer to subtensors in the following way. A subtensor obtained by fixing one

1However, when we derive the Newton equations for solving the minimization problem, then we
will deal with a Hessian, which, of course, is a linear operator constructed in terms of tensors.

2All our citations of [16] will refer to Chapter 2 of the book.
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of the indices is called a slice, e.g.,

A(j, :, :).

A fiber is a subtensor, where all indices but one are fixed:

A(j, :, l).

When in the following, we use tensors, matrices, and vectors in operations, it is
assumed that the dimensions of the respective quantities are conforming in the sense
that all the operations are well defined.

2.1. Tensor-matrix multiplication. We define mode-pmultiplication of a ten-
sor by a matrix as follows. For concreteness, we first let p = 1. The mode-1 product
of a tensor A ∈ R

J×K×L by a matrix W ∈ R
M×J is defined by

(2.1) R
M×K×L � B = (W )1 ·A, bmkl =

J∑
j=1

wmjajkl.

This means that all column vectors (mode-1 fibers) in the 3-tensor are multiplied by
the matrix W . Similarly, mode-2 multiplication by a matrix X means that all row
vectors (mode-2 fibers) are multiplied by the matrix X . Mode-3 multiplication is
analogous.

It is easy to see that for integers p �= q, mode-p and mode-q multiplication com-
mute

(W )p ·
(
(X)q ·A

)
= (X)q ·

(
(W )p ·A

)
.

Therefore, it makes sense to define

(W,X)p,q ·A = (W )p ·
(
(X)q ·A

)
.

Obviously, the following identity holds:

(2.2) (W1)p ·
(
(W2)p ·A

)
= (W1W2)p ·A,

where the matrix and tensor dimensions are assumed to be conforming and product
W1W2 is standard matrix multiplication.

In the case when tensor-matrix multiplication is performed in all modes in the
same formula, we omit the subscripts and write

(2.3) (X,Y, Z) ·A,
where the mode of each multiplication is understood from the order in which the
matrices are given. Thus, we have the identity

(Y )2 ·A = (I, Y, I) ·A.
The notation (2.3) was suggested by Lim [7]. An alternative notation was earlier
given in [5]. Our (W )p · A is the same as A ×p W in that system, and the identity
(2.2) reads (A×pW2)×pW1 = A×p (W1W2).

One can also write the standard matrix multiplication of three matrices in the
form

(2.4) XFY T = (X,Y ) · F,
where, at the same time, F is considered as a matrix and a 2-tensor.
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It is convenient to introduce a separate notation for multiplication by a transposed
matrix V ∈ RJ×M :

(2.5) R
M×K×L � C =

(
V T
)
1

·A = A · (V )1 , cmkl =
J∑
j=1

ajklvjm.

2.2. A “canonical” tensor matricization. In the following sections, we will
occasionally rearrange the elements of a tensor so that they form a matrix. We will
refer to this as matricizing [2] the tensor.3 In particular, when the Newton equations
are to be solved numerically, they must be arranged as standard “matrix-vector”
linear equations. Sometimes the matricization is performed along one specific mode
[5, 15, 26]. Given an N -tensor A ∈ RI1×···×IN , its matricization along the nth mode
is a matrix of dimensions In × I1 · · · In−1In+1 · · · IN . Here we will introduce a more
general tensor matricization which is intuitively and directly related to the matrix-
tensor multiplication. In this matricization, we will map some modes of a tensor to
the rows of the matrix and the rest to the columns. A similar, but not identical,
generalized matricization is given in Bader and Kolda [2, 3]. The difference between
the two definitions is explained later in this section.

Let r = [r1, . . . , rL] be the modes of A mapped to the rows and c = [c1, . . . , cM ]
be the modes of A mapped to the columns. The matricization is denoted

(2.6) A(r;c) ∈ R
J×K , where J =

L∏
i=1

Iri and K =
M∏
i=1

Ici .

Of course, many different one-to-one functions can map the tensor A onto a matrix
with dimensions as specified in (2.6). The different maps differ in the ordering of the
row and column indices of specific tensor elements.

We consider it useful, for analysis and consistency with tensor-matrix prod-
ucts, if the matricization operation has the following properties, which are best
illustrated with a few examples. Let A be a 5-tensor and consider the product
B = A · (V,W,X, Y, Z), where V,W,X, Y, Z are matrices of appropriate dimensions
multiplied with A along its different modes. We want to point out that the box brack-
ets used to specify r and c will be omitted when writing out a specific matricization,
like in the following examples.

B(2;1,3...5) ≡ B(2) = WTA(2)(V ⊗X ⊗ Y ⊗ Z), r = [2], c = [1, 3, 4, 5],

B(3,2;1,4,5) ≡ B(3,2) = (X ⊗W )TA(3,2)(V ⊗ Y ⊗ Z), r = [3, 2], c = [1, 4, 5],

B(2,4,1;5,3) = (W ⊗ Y ⊗ V )TA(2,4,1;5,3)(Z ⊗X), r = [2, 4, 1], c = [5, 3],

B(1,2,4;5,3) ≡ B(;5,3) = (V ⊗W ⊗ Y )TA(;5,3)(Z ⊗X), r = [1, 2, 4], c = [5, 3].

Above ⊗ denotes the Kronecker product of matrices. Observe that the ordering of
the matrices in the Kronecker products is specified by matricization indices r and
c. Specifying only the row (column) modes assumes the column (row) modes to be
in increasing order. In the above examples, we have used multiplication (2.3). For
variant (2.5), the transpose will be introduced on the other side. For instance, with
C = (V,W,X, Y, Z) ·A, we have

C(2) = WA(2)(V ⊗X ⊗ Y ⊗ Z)T, r = [2], c = [1, 3, 4, 5],

C(3,2) = (X ⊗W )A(3,2)(V ⊗ Y ⊗ Z)T, r = [3, 2], c = [1, 4, 5].

3Alternative terms are unfolding [5] or flattening [26].
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For a given N -tensor A, the matricization to A(r;c) has the desired properties if
element A(i1, . . . , iN) is mapped to A(r;c)(j, k), where

j = 1 +
L∑
l=1

[(
irL−l+1 − 1

) l−1∏
l′=1

IrL−l′+1

]
,(2.7)

k = 1 +
M∑
m=1

[(
icM−m+1 − 1

) m−1∏
m′=1

IcM−m′+1

]
.(2.8)

The matricization mapping presented in Bader and Kolda [2, 3] is different from ours
in that it reverses the ordering of the matrices in both sides of matricized forms4 of the
tensor-matrix products. As already stated, tensor matricization can be represented in
many different ways, and from a theoretical point of view, this is not an issue as long
as the matricization mapping is applied consistently on both sides of an equation.
But we want to emphasize that from a practical, implementational, and analytical
point of view, it is important that the matricization is as simple and straightforward
as possible, specifically when the matricization is applied on matrix-tensor products.

Applying the matricizing on the matrix products B = (X,Y ) · A = XAY T, we
obtain

B(1) = XA(1)Y T, B(2) = Y A(2)XT.

Of course, this is trivial since for matrices A(1) ≡ A and A(2) ≡ AT.
Observe that this framework enables vectorization as well. Then, one of r or c

has to be the empty set denoted ∅, and the other contains all modes. Consider first
matrix case B = (X,Y ) · A = XAY T. Vectorizing B with r = [1, 2] and c = ∅, we
obtain

B(1,2;∅) = (X ⊗ Y )A(1,2;∅),

where A(1,2;∅) and B(1,2;∅) are the row-wise vectorizations of A and B, giving a
column vector. Changing the row modes to r = [2, 1], we obtain the more familiar

B(2,1;∅) = vec(B) = vec
(
XAY T

)
= (Y ⊗X) vec(A) = (Y ⊗X)A(2,1;∅),

where, by convention, vec(·) denotes the columnwise vectorization. Further, with a
3-tensor B = A · (X,Y, Z), we have

B(2,1,3;∅) = (Y ⊗X ⊗ Z)TA(2,1,3;∅) and B(∅;2,1,3) = A(∅;2,1,3)(Y ⊗X ⊗ Z),

where, in the first case, the vectorization gives a column vector, and, in the second
case, the vectorization gives a row vector.

Finally, for later reference, we specify two special cases with tensor-matrix product
along one mode only. Let A be a general N -tensor. Then

B = A · (X)p , ⇔ B(p) = XTA(p),(2.9)

C = (X)p ·A, ⇔ C(p) = XA(p).(2.10)

The notation in this paper emphasizes the connection between multilinear tensor-
matrix products and their matricized form. Other notations are found in [17, 5, 15, 11].

4For example, in the Bader–Kolda mapping, the matricization of B would be B(2,4,1;5,3) =
(V ⊗ Y ⊗ W )TA(2,4,1;5,3)(X ⊗ Z).
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2.3. Inner product, tensor product, and contracted product. Given two
tensors A and B of the same dimensions, we define the inner product

(2.11) 〈A,B〉 =
∑
j,k,l

ajklbjkl.

This is, of course, the standard Euclidean inner product when we identify the space
of tensors RJ×K×L with the vector space RJKL. The corresponding tensor norm is

(2.12) ‖A‖ = 〈A,A〉1/2.

This Frobenius norm will be used throughout the paper. As in the matrix case, the
norm is invariant under orthogonal transformations, i.e.,

‖A‖ = ‖(U, V,W ) ·A‖ = ‖A · (U, V,W ) ‖

for orthogonal matrices U , V , and W . This follows immediately from the fact that
mode-p multiplication by an orthogonal matrix does not change the Euclidean length
of the mode-p fibers.

The tensor product or outer product of two tensors A ∈ RJ×K×L and B ∈ RM×N ,
say, is a tensor of higher dimensionality, here a 5-tensor

R
J×K×L×M×N � C = A ◦ B, cjklmn = ajklbmn.

The inner product (2.11) can be considered as a special case of the contracted
product of two tensors (cf. [16, Chapter 2]), which is a tensor (outer) product followed
by a contraction along specified modes. Thus, if A and B are 3-tensors, we define,
using essentially the notation of [2],

C = 〈A,B〉1 , cjklm =
∑
λ

aλjkbλlm (4-tensor) ,

D = 〈A,B〉1:2 , djk =
∑
λ,μ

aλμjbλμk (2-tensor),

e = 〈A,B〉 = 〈A,B〉1:3 , e =
∑
λ,μ,ν

aλμνbλμν (scalar).

It is required that contracted dimensions are equal in the two tensors. We will refer
to the first two as partial contractions.

Observe that we let the ordering of the modes in contracted tensor products be
implicitly given in the summation. Thus, given A ∈ RJ×K×L and B ∈ RJ×M×N , then

C = 〈A,B〉1 ∈ R
K×L×M×N .

In general, the modes of the product are those of the noncontracted modes of the first
argument, followed by those of the noncontracted modes of the second argument, in
their respective orders.

We will also use negative subscripts when the contraction is made in all but a few
modes. For 3-tensors, we have

〈A,B〉2:3 ≡ 〈A,B〉−1 , 〈A,B〉2 ≡ 〈A,B〉−(1,3) .
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The contracted product can be defined also for tensors of different numbers of
modes, and contractions can be made along any two conforming modes. For example,
with a 4-tensor F and matrices (2-tensors) F and G, we could have

(2.13) 〈A, F 〉3,4;1,2 = G,
∑
μ,ν

ajkμνfμν = gjk,

where subscripts 3, 4 and 1, 2 indicate the contracting modes of the two arguments.
Obviously, (2.13) defines a linear system of equations.

In the following sections, we will need a few lemmas. The first result relates
contraction to matricization.

Lemma 2.1. Let A and B be N -tensors of matching dimensions in all but (possi-
bly) the ith mode and A(i) and B(i) the corresponding ith mode matricizations. Then

(2.14) 〈A,B〉−i = A(i)
(
B(i)

)T

.

If all dimensions match, then

(2.15) 〈A,B〉 = tr
(〈A,B〉−i) = tr

(
A(i)

(
B(i)

)T
)
.

Proof. For simplicity, we give the proof for only 3-tensors and partial contraction
in all but the first mode. The general case is completely analogous. Let A ∈ R

J×L×M

and B ∈ RK×L×M . Then

(2.16) 〈A,B〉−1 (j, k) =
∑
l,m

ajlmbklm.

With C = A(1)(B(1))T, we get

(2.17) C(j, k) =
∑
λ

a
(1)
jλ b

(1)
kλ ,

where A(1)(j, λ) = a
(1)
jλ and B(1)(k, λ) = b

(1)
kλ . By (2.8), element A(j, l,m) is mapped

to A(1)(j, λ), where λ = m+ (l − 1)M and similarly for elements of B. The equality
of (2.14) follows by observing that the λ-summation for the right-hand side actually
consists of a summation over m and l.

The identity (2.15) follows from (2.16) by inspection.
The partial contracted products of two matrices A and B are

(2.18) 〈A,B〉−2 = 〈A,B〉1 = ATB, 〈A,B〉−1 = 〈A,B〉2 = ABT,

which shows that partial contraction is related to matrix transposition and multipli-
cation. In the next lemma, we show that partial contractions play the role of taking
the adjoint with respect to the inner product (2.11).

Lemma 2.2. Let the N -tensors B and C and the matrix Q be of conforming
dimensions. Then

〈B · (Q)i , C〉 =
〈
Q, 〈B, C〉−i

〉
,(2.19)

〈B · (Q)i , C〉−i = QT 〈B, C〉−i =
〈
Q, 〈B, C〉−i

〉
1
,(2.20) 〈B, C · (QT

)
i

〉
−i = 〈B, C〉−iQT =

〈〈B, C〉−i , Q〉2 .(2.21)
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Proof. Equation (2.19) follows from

〈
Q, 〈B, C〉−i

〉
=
〈
Q,B(i)

(
C(i)

)T
〉

= tr
(
QTB(i)

(
C(i)

)T
)

= tr
(

(B · (Q)i)
(i)
(
C(i)

)T
)

= 〈B · (Q)i , C〉 ,

where we have used (2.15) and (2.9). The second and third identities follow directly
by matricizing the expressions along the ith mode and using (2.14).

The following lemma can be motivated as follows: Obviously, from the definition
of a contracted product, the mapping

Q −→
〈
B · (Q)j , C

〉
−i

is linear from matrices to matrices. In order to solve a linear system involving such a
mapping, we need to write it in the form (2.13).

Lemma 2.3. Let the N -tensors B and C and the matrix Q be of conforming
dimensions. If j �= i, then

〈
B · (Q)j , C

〉
−i

=

⎧⎨
⎩
〈
〈B, C〉−(i,j) , Q

〉
1,3;1,2

if j < i,〈
〈B, C〉−(i,j) , Q

〉
2,4;1,2

if j > i,
(2.22)

〈
B, C · (Q)j

〉
−i

=

⎧⎨
⎩
〈
〈B, C〉−(i,j) , Q

〉
3,1;1,2

if j < i,〈
〈B, C〉−(i,j) , Q

〉
4,2;1,2

if j > i.
(2.23)

The proof is given in Appendix A.

2.4. Multilinear rank and higher order SVD. The multilinear rank of a
3-tensor is a triplet (r1, r2, r3) such that

ri = dim
(
R
(
A(i)

))
= rank

(
A(i)

)
, i = 1, 2, 3,

where R(A) = {y | y = Ax} is the range space of the matrix A and rank(A) is the
matrix rank. Multilinear rank [12, 6] is discussed in [7], as well as other rank concepts.
In this paper, we will deal only with multilinear rank, and we use the notation rank-
(r1, r2, r3) and rank(A) = (r1, r2, r3).

For matrices, the rank is obtained via the singular value decomposition (SVD);
see, e.g., [10, Chapter 2]. One generalization of the SVD to tensors, the higher order
SVD, was given in [5]. We here present the HOSVD for the case when A is a 3-tensor.
The general case is an obvious generalization.

Theorem 2.4 (HOSVD). Any 3-tensor A ∈ RJ×K×L can be factorized

(2.24) A = (U, V,W ) · S,
where U ∈ RJ×J , V ∈ RK×K, and W ∈ RL×L are orthogonal matrices and S ∈
RJ×K×L is all-orthogonal. The matrices 〈S,S〉−i, i = 1, 2, 3 are diagonal, and

‖S(1, :, :)‖ ≥ ‖S(2, :, :)‖ ≥ · · · ≥ 0,(2.25)
‖S(:, 1, :)‖ ≥ ‖S(:, 2, :)‖ ≥ · · · ≥ 0,(2.26)
‖S(:, :, 1)‖ ≥ ‖S(:, :, 2)‖ ≥ · · · ≥ 0(2.27)

are the 1-mode, 2-mode, and 3-mode singular values, also denoted σ(1)
i , σ(2)

i , σ(3)
i .
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Partitioning the orthogonal matrices in terms of columns U = (u1, . . . , uJ), V =
(v1, . . . , vK), W = (w1, . . . , wL), the HOSVD equation can be written

A =
∑
j,k,l

sjkl uj ◦ vk ◦ wl,

where ◦ denotes the tensor (outer) product: for vectors x, y, and z, we have

(x ◦ y ◦ z)λμν = xλyμzν .

Assume that the 1-, 2-, and 3-mode singular values of A satisfy

σ(1)
r1 > 0, σ

(1)
r1+1 = 0,

σ(2)
r2 > 0, σ

(2)
r2+1 = 0,

σ(3)
r3 > 0, σ

(3)
r3+1 = 0

for some constants r1, r2, and r3. It is easy to show that, in this case, the multilinear
rank of A is (r1, r2, r3).

3. Best rank-(r1, r2, r3) approximation. Assume that we want to approxi-
mate, using the norm (2.12), the tensor A by another tensor B of rank (r1, r2, r3).
Thus, we want to solve

(3.1) min
rank(B)=(r1,r2,r3)

‖A− B‖.

This problem is treated in [6]. In the matrix case, the solution of the corresponding
problem is given by the truncated SVD (the Eckart–Young property; a simple proof
is given in [9, Theorem 6.7]). In view of the fact that the HOSVD “orders the mass”
of the tensor in a similar way as the SVD (see (2.25)–(2.27)), one might think that a
truncated HOSVD would give the solution of (3.1). However, this is not the case [6].

Some theoretical questions concerning the best rank-(r1, r2, r3) approximation
problem are studied in [7]. In particular, the following result is proved (Corollary 4.5).

Proposition 3.1. Let (r1, r2, . . . , rk) be an arbitray k-tuple satisfying ri ≤ si,
i = 1, 2, . . . , k, where (s1, s2, . . . , sk) is the multilinear rank of a given k-tensor A.
Then A has a best approximation B, in the norm (2.12), with

rank(B) ≤ (r1, r2, . . . , rk).

The rank constraint in (3.1) implies (see [7, 6] and section 2.4) that B can be
written

B = (X,Y, Z) · B, B ∈ R
r1×r2×r3 ,

where X ∈ RJ×r1 , Y ∈ RK×r2 , and Z ∈ RL×r3 , with

(3.2) XTX = I, Y TY = I, ZTZ = I.

The identity matrices in (3.2) have dimensions r1, r2, and r3, respectively.
Define three orthogonal matrices

X̂ =
(
X X⊥

)
, X⊥ ∈ R

J×(J−r1),

Ŷ =
(
Y Y⊥

)
, Y⊥ ∈ R

K×(K−r2),

Ẑ =
(
Z Z⊥

)
, Z⊥ ∈ R

L×(L−r3).
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Further, define three sets of indices

S = {(j, k, l) | 1 ≤ j ≤ J, 1 ≤ k ≤ K, 1 ≤ l ≤ L},
Sr = {(j, k, l) | 1 ≤ j ≤ r1, 1 ≤ k ≤ r2, 1 ≤ l ≤ r3},
S′ = S\Sr.

Define Â = (X̂T, Ŷ T, ẐT) ·A and B̂ = (X̂T, Ŷ T, ẐT) ·B. Then the residual in the
approximation problem becomes

‖A − B‖2 =
∥∥∥Â − B̂∥∥∥2

=
∑

(j,k,l)∈Sr

(
âjkl − b̂jkl

)2

+
∑

(j,k,l)∈S′

(
âjkl − b̂jkl

)2

=
∑

(j,k,l)∈Sr

(
âjkl − b̂jkl

)2

+
∑

(j,k,l)∈S′
â2
jkl ,

due to the rank constraint. The first term can be made equal to zero by choosing
âjkl = b̂jkl, and the residual becomes

∥∥∥Â − B̂∥∥∥2

=
∑

(j,k,l)∈S′
â2
jkl.

We now see that the problem of solving (3.1), i.e., making the residual as small as
possible, is equivalent to determining X , Y , and Z so that

∥∥(XT, Y T, ZT
) ·A∥∥ = ‖A · (X,Y, Z)‖

is maximized. We thus define the objective function to be maximized:

(3.3) Φ(X,Y, Z) =
1
2
‖A · (X,Y, Z)‖2 =

1
2

∑
j,k,l

⎛
⎝∑
λ,μ,ν

aλμνxλjyμkzνl

⎞
⎠

2

,

where xλj , yμk, and zνl are elements of X , Y , and Z, respectively.

4. Solving the maximization problem by Newton’s method. It follows
from the invariance of the norm under orthogonal transformations that

(4.1) Φ(X,Y, Z) = Φ(XU, Y V, ZW )

for orthogonal matrices U ∈ Rr1×r1 , V ∈ Rr2×r2 , and W ∈ Rr3×r3 . This means
that the problem of maximizing Φ under the orthogonality constraint (3.2) is not yet
well defined: the problem is overparameterized, and any straightforward constrained
optimization method would have difficulties. It follows that we should maximize the
function Φ not just over matrices with orthonormal columns but over equivalence
classes of such matrices, for instance,

(4.2) [X ] = {XU | U orthogonal}.

This means that we should maximize over the Grassmann manifold [8] or more pre-
cisely, over a product of Grassmann manifolds.
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4.1. Newton’s method on the Grassmann manifold. The Grassmann ma-
nifold can be considered as a set of equivalence classes of matrices (4.2) with orthonor-
mal columns that span the same subspace. Here we give a very brief description of
Newton’s method for maximizing a function G(X) defined on the Grassmann mani-
fold and then we state Newton’s method on the product manifold. Our presentation
is based on that in [8], where detailed definitions and derivations are given. For a
comprehensive treatment of optimization on matrix manifolds, see [1].

Assume that X ∈ RJ×r1 is a point on the Grassmann manifold Gr(J, r1). This
is clearly abuse of notation, because, strictly speaking, we should say that the matrix
X with orthonormal columns is a representative of the equivalence class of matrices
that represents a point on the manifold. In order not to burden the presentation with
too many abstract details, we allow ourselves this laxness.

The manifold is a “curved object” (i.e., not a vector space), and therefore, we
perform our computations on a “linear approximation” at X of the manifold, the
tangent space TX , which is an affine vector space with elements in RJ×r1 . It can be
shown [8] that any tangent5 Δ ∈ TX satisfies

XTΔ = 0.

The projection on the tangent space is

(4.3) ΠX = I −XXT.

The canonical way of defining an inner product on the tangent space is

(4.4) 〈Δ1,Δ2〉 = tr
(
ΔT

1 Δ2

)
,

where Δ1 and Δ2 are tangents at the same point X .
Recall that we want to maximize G(X) on Gr(J, r1). In Newton’s method on the

Grassmann manifold, we make a local quadratic approximation of a function defined
on the manifold. The natural approach is to consider the function along geodesic
curves. Let Δ be a tangent at X , and let XΔ(t) be a parameterization of a geodesic
curve in the direction Δ. With the thin SVD, Δ = UΣV T, where U ∈ RJ×r1 and
Σ ∈ Rr1×r1 , the geodesic is given by [8]

(4.5) XΔ(t) = XV cos(tΣ)V T + U sin(tΣ)V T.

Naturally, dX(t)/dt|t=0 = Δ.
The objective of the quadratic approximation is to determine a tangent Δ at X

that maximizes

G(XΔ(1)) ≈ G(X) +
dG

dt

∣∣∣∣
t=0

+
1
2
d2G

dt2

∣∣∣∣
t=0

= G(X) + 〈Δ,∇G〉 + 1
2
〈Δ, H(Δ)〉,(4.6)

where 〈·, ·〉 is the inner product (4.4). ∇G is the gradient on the tangent space

(4.7) ∇G = ΠXGx, (Gx)jk =
∂G

∂xjk
,

and the Hessian H(Δ) is a linear operator on the tangent space H(·) : TX → TX .

5We could say tangent vectors, since they are elements of an affine vector space or tangent
matrices, since, in our case, they have the form of a matrix. To avoid confusion, we will simply call
them tangents.
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Maximizing (4.6) with respect to Δ leads us to the Newton equation H(Δ) =
−∇G. It is shown in [8] that the Newton equation for determining Δ ∈ TX is a
Sylvester-like equation, which in our notation becomes

(4.8) ΠX 〈Gxx,Δ〉1:2 −Δ 〈X,Gx〉1 = −∇G, (Gxx)jklm =
∂2G

∂xjk ∂xlm
.

Here, the contracted product of the 4-tensor Gxx and the matrix Δ defines a linear
operator. 〈Gxx,Δ〉1:2 is a matrix, which can be multiplied by ΠX to project it to the
tangent space TX .

In order to solve the Newton equation (4.8) numerically, there are essentially three
approaches.

Solve the problem in the ambient Euclidean space. Using the coordinates given by
X itself, we could disregard that the problem is defined on the Grassmann manifold
and solve the Newton equation in the ambient Euclidean space RJr1 . Since X is
constrained, i.e., XTX = I, the overparameterized coordinate representation will
cause NG equation (4.8) to be singular. A pseudoinverse solution combined with a
projection might be used to keep the iterates on the manifold.

Solve the problem on the tangent space. The NG equation (4.8) is nonsingular
in the neighborhood of a local maximum when considered on the tangent space TX .
Using a coordinate representation on the tangent space, one can obtain a smaller
problem with a full rank Hessian operator. We will do this in the case of a product
manifold in section 4.3.

Solve the problem by introducing Lagrange multipliers. The third approach, which
is more efficient for large problems with J � r1, is to effectively introduce Lagrange
multipliers for the constraint and simultaneously solve for those and Δ; see, e.g., [19,
Algorithm 2].

4.2. Newton’s method on the product manifold. Our constrained opti-
mization problem is

(4.9) max
(X,Y,Z)∈Gr3

Φ(X,Y, Z), Gr3 = Gr(J, r1)×Gr(K, r2)×Gr(L, r3),

where the objective function is defined in (3.3). The tangent space at (X,Y, Z) is
T3 = TX × TY × TZ , and the inner product is the sum of the inner products on the
respective manifolds. The dimensions of the tangent spaces are usually different, and
therefore, we write Δ = (Δx,Δy,Δz) as a triplet rather than as blocks of a matrix.
This is the case both for the gradient and the Hessian. We will now derive the Newton
equation on the product manifold corresponding to (4.8). First, we will differentiate
Φ in direction Δ and then we will identify the terms in the expansion corresponding
to (4.6).

A geodesic curve in direction (Δx,Δy,Δz) is given by (X(t), Y (t), Z(t)), where
the components are defined according to (4.5). From the definition of a tangent (see
also, (4.5)), we have

dxνμ
dt

∣∣∣∣
t=0

= (Δx)νμ

and correspondingly in the other two directions. We therefore get(
dX(t)
dt

,
dY (t)
dt

,
dZ(t)
dt

)∣∣∣∣
t=0

= (Δx , Δy , Δz),
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and since

A · (X,Y, Z) (j, k, l) =
∑
λ,μ,ν

aλμνxλjyμkzνl,

every xλj , etc., will be replaced by (Δx)λj , etc., in the differentiation of A · (X,Y, Z):

d (A · (X,Y, Z))
dt

∣∣∣∣
t=0

= A · (Δx, Y, Z) +A · (X,Δy, Z) +A · (X,Y,Δz) .

4.2.1. Grassmann gradient. The first derivative of Φ becomes

dΦ
dt

∣∣∣∣
t=0

=
1
2
d

dt
〈A · (X,Y, Z) ,A · (X,Y, Z)〉|t=0

= 〈A · (Δx, Y, Z) ,A · (X,Y, Z)〉(4.10)
+ 〈A · (X,Δy, Z) ,A · (X,Y, Z)〉(4.11)
+ 〈A · (X,Y,Δz) ,A · (X,Y, Z)〉.(4.12)

First, we will identify the gradient ∇Φ, and to do this, we need to rewrite (4.10)–
(4.12) in the form of the first derivative term in (4.6).

It is convenient to define the tensor F = A · (X,Y, Z), since it will be used in
many expressions. From (2.19), we see that

(4.13) 〈A · (Δx, Y, Z) ,F〉 =
〈
Δx, 〈A · (I, Y, Z) ,F 〉−1

〉
=: 〈Δx,Φx〉

and correspondingly, for the other terms in (4.11) and (4.12). The x-part of the
Grassmann gradient (see (4.7)) then becomes

ΠXΦx = ΠX 〈A · (I, Y, Z) ,F〉−1

= 〈A · (I, Y, Z) ,A · (X,Y, Z)〉−1 −XXT 〈A · (I, Y, Z) ,F〉−1

= 〈A · (I, Y, Z) ,A · (I, Y, Z)〉−1X −X 〈F ,F〉−1 ,(4.14)

where we have used Lemma 2.1, (2.20), and (2.21). The factors in (4.14) have an
interpretation in terms of subtensors: F is a tensor in Rr1×r2×r3 , and the contracted
product

〈F ,F〉−1 = 〈F ,F〉2:3 = 〈A · (X,Y, Z) ,A · (X,Y, Z)〉2:3
is a symmetric matrix in Rr1×r1 , whose (j, k) element is the inner product between
F(j, :, :) and F(k, :, :), i.e., first mode jth and kth slices of F . Multiplying from the
left by X results in a J × r1 matrix. Similarly, 〈A · (I, Y, Z) ,A · (I, Y, Z)〉−1 is a
symmetric J × J matrix, where the elements are inner products between the slices of
A · (I, Y, Z).

Using analogous reformulations for (4.11) and (4.12), the complete Grassmann
gradient becomes ∇Φ = (ΠXΦx,ΠY Φy,ΠZΦz), where

ΠXΦx = 〈A · (I, Y, Z) ,A · (I, Y, Z)〉−1
X −X 〈F ,F〉−1 ,(4.15)

ΠY Φy = 〈A · (X, I, Z) ,A · (X, I, Z)〉−2 Y − Y 〈F ,F〉−2 ,(4.16)

ΠZΦz = 〈A · (X,Y, I) ,A · (X,Y, I)〉−3 Z − Z 〈F ,F〉−3 .(4.17)
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4.2.2. Grassmann Hessian. Computing the second derivative of Φ, using the
same technique as for the gradient, we obtain

d2Φ
dt2

∣∣∣∣
t=0

= 〈A · (Δx, Y, Z) ,A · (Δx, Y, Z)〉+ 〈A · (Δx,Δy, Z) ,A · (X,Y, Z)〉

+ 〈A · (Δx, Y, Z) ,A · (X,Δy, Z)〉+ 〈A · (Δx, Y,Δz) ,A · (X,Y, Z)〉
+ 〈A · (Δx, Y, Z) ,A · (X,Y,Δz)〉+ · · · ,(4.18)

where, for simplicity of the present discussion, we have omitted 10 analogous terms.
The first term, which gives the “xx” derivative, can be dealt with using Lemma 2.2.
We get

〈A · (Δx, Y, Z) ,A · (Δx, Y, Z)〉 =
〈
Δx, 〈A · (I, Y, Z) ,A · (Δx, Y, Z)〉−1

〉
=
〈
Δx, 〈A · (I, Y, Z) ,A · (I, Y, Z)〉−1 Δx

〉
.

From (4.8) and (4.13), we now see that the “xx” part of the Grassmann Hessian is a
Sylvester operator

Hxx(Δx) = ΠX 〈A · (I, Y, Z) ,A · (I, Y, Z)〉−1 Δx −ΔxX
TΦx

= ΠX 〈A · (I, Y, Z) ,A · (I, Y, Z)〉−1 Δx −Δx 〈F ,F〉−1 ,(4.19)

where Φx is defined in (4.13) and we have used Lemma 2.2.
For the second term in (4.18), we get, using Lemmas 2.2 and 2.3,

〈A · (Δx,Δy, Z) ,A · (X,Y, Z)
〉

=
〈
Δx,

〈A · (I,Δy, Z) ,A · (X,Y, Z)
〉
−1

〉
=
〈
Δx,

〈F1
xy,Δy

〉
2,4;1,2

〉
,(4.20)

where F1
xy is the 4-tensor

R
J×K×r1×r2 � F1

xy = 〈A · (I, I, Z) ,A · (X,Y, Z)〉−(1,2)

= 〈A · (I, I, Z) ,A · (X,Y, Z)〉
3
.

Obviously,
〈F1

xy, ·
〉
2,4;1,2

defines a linear operator that maps matrices on matrices.
The third term in (4.18) becomes, again, using Lemmas 2.2 and 2.3,

〈A · (Δx, Y, Z) ,A · (X,Δy, Z)
〉

=
〈
Δx,

〈A · (I, Y, Z) ,A · (X,Δy, Z)
〉
−1

〉
=
〈
Δx,

〈F2
xy,Δy

〉
4,2;1,2

〉
,(4.21)

where F2
xy is a 4-tensor

R
J×r2×r1×K � F2

xy = 〈A · (I, Y, Z) ,A · (X, I, Z)〉−(1,2)

= 〈A · (I, Y, Z) ,A · (X, I, Z)〉3 .
We now have

(4.22) Fxy(Δy) =
〈F1

xy,Δy

〉
2,4;1,2

+
〈F2

xy,Δy

〉
4,2;1,2

.
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The fourth and fifth terms in (4.18) can be dealt with similarly and give the Fxz
operator.

In order for the second derivative operators to be in the tangent space, we must
multiply also Fxy, and Fxz by ΠX . If we rewrite all the terms in the second derivative
(4.18) in an analogous way, we get a Hessian operator

H(Δ) = (Φx∗(Δ),Φy∗(Δ),Φz∗(Δ)) : T
3 �→ T

3,

where

Φx∗(Δ) = Hxx(Δx) +Hxy(Δy) +Hxz(Δz), Φx∗(·) : T
3 → TX ,

Φy∗(Δ) = Hyx(Δx) +Hyy(Δy) +Hyz(Δz), Φy∗(·) : T
3 → TY ,(4.23)

Φz∗(Δ) = Hzx(Δx) +Hzy(Δy) +Hzz(Δz), Φz∗(·) : T
3 → TZ ,

and each “H∗∗” is a linear operator specified below. The diagonal operators6 are
(recall that F = A · (X,Y, Z))

Hxx(Δx) = ΠX 〈Bx,Bx〉−1 Δx −Δx 〈F ,F〉−1 , Bx = A · (I, Y, Z) ,

Hyy(Δy) = ΠY 〈By,By〉−2 Δy −Δy 〈F ,F〉−2 , By = A · (X, I, Z) ,(4.24)

Hzz(Δz) = ΠZ 〈Bz,Bz〉−3 Δz −Δz 〈F ,F〉−3 , Bz = A · (X,Y, I) .

Since the Hessian operator is self-adjoint,7 we give only the blocks of the “upper
triangular part”

Hxy(Δy) = ΠX

(〈
〈Cxy,F〉−(1,2) ,Δy

〉
2,4;1,2

+
〈
〈Bx,By〉−(1,2) ,Δy

〉
4,2;1,2

)
,

Hxz(Δz) = ΠX

(〈
〈Cxz,F〉−(1,3) ,Δz

〉
2,4;1,2

+
〈
〈Bx,Bz〉−(1,3) ,Δz

〉
4,2;1,2

)
,

Hyz(Δz) = ΠY

(〈
〈Cyz,F〉−(2,3) ,Δz

〉
2,4;1,2

+
〈
〈By,Bz〉−(2,3) ,Δz

〉
4,2;1,2

)
,

where we have also introduced Cxy = A · (I, I, Z), Cxz = A · (I, Y, I), and Cyz =
A · (X, I, I). Observe that diagonal operators are Sylvester operators, and the off-
diagonal operators have the form of 4-tensors mapping elements of one tangent space
to another tangent space, for instance, Hxz(·) : TZ → TX .

4.3. Coordinate representation for the gradient and the Hessian oper-
ator on the tangent space. Hessian (4.23) is still given in terms of the ambient
Euclidean coordinate system. In order to obtain a linear system of equations with the
correct dimension that is nonsingular in a neighborhood of a maximum, we introduce
local coordinate expressions for the unknowns on the tangent space. We first see that
the projections onto the tangent spaces can be represented as

ΠX = X⊥XT
⊥, ΠY = Y⊥Y T

⊥ , ΠZ = Z⊥ZT
⊥,

6Even if the Hessian is not a block matrix, we will refer to the operators Hxx, Hyy, etc., as
diagonal operators and Hxy, Hxz , etc., as off-diagonal operators.

7The operator is still somewhat abstract in the sense that we have not specified any coordinate
representation on the tangent space T3. However, considered as an operator on T3, it can be seen
that the operator is self-adjoint.
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where X⊥, Y⊥, Z⊥, are defined as in section 3. In order to get a coordinate represen-
tation for the unknown tangents, we write them as [8, section 2.5]

Δx = X⊥Dx, Dx ∈ R
(J−r1)×r1 ,

Δy = Y⊥Dy, Dy ∈ R
(K−r2)×r2 ,(4.25)

Δz = Z⊥Dz, Dx ∈ R
(L−r3)×r3

(note that the coordinate matrices D∗ are not assumed to be diagonal, even if the
notation might be interpreted in that direction). With these coordinate expressions,
we can repeat the derivation from after (4.18) and write the Hessian as a linear
operator acting on D = (Dx, Dy, Dz). We get

Ĥ(D) =
(
Φ̂x∗(D), Φ̂y∗(D), Φ̂z∗(D)

)
,

where

Φ̂x∗(D) = XT
⊥Φx∗(Δ) = Ĥxx(Dx) + Ĥxy(Dy) + Ĥxz(Dz),

Φ̂y∗(D) = Y T
⊥Φy∗(Δ) = Ĥyx(Dx) + Ĥyy(Dy) + Ĥyz(Dz),(4.26)

Φ̂z∗(D) = ZT
⊥Φz∗(Δ) = Ĥzx(Dx) + Ĥzy(Dy) + Ĥzz(Dz),

and the “Ĥ∗∗” terms are, as before, linear operators mapping elements from one
tangent space to another (possibly the same) tangent space. The diagonal operators
are

Ĥxx(Dx) =
〈
B̂x, B̂x

〉
−1
Dx −Dx 〈F ,F〉−1 , B̂x = A · (X⊥, Y, Z) ,

Ĥyy(Dy) =
〈
B̂y, B̂y

〉
−2
Dy −Dy 〈F ,F〉−2 , B̂y = A · (X,Y⊥, Z) ,(4.27)

Ĥzz(Dz) =
〈
B̂z, B̂z

〉
−3
Dz −Dz 〈F ,F〉−3 , B̂z = A · (X,Y, Z⊥) .

The Hessian operator Ĥ is self-adjoint with respect to the inner product〈
D, Ĥ(E)

〉
T3

=
〈
Ĥ(D), E

〉
T3
,

where

〈D,E〉
T3 = 〈Dx, Ex〉+ 〈Dy, Ey〉+ 〈Dz, Ez〉

and D = (Dx, Dy, Dz) and E = (Ex, Ey, Ez) are the coordinates for two tangents.
Therefore, we give only the blocks of the “upper triangular part”

Ĥxy(Dy) =

(〈〈
Ĉxy,F

〉
−(1,2)

, Dy

〉
2,4;1,2

+
〈〈
B̂x, B̂y

〉
−(1,2)

, Dy

〉
4,2;1,2

)
,

Ĥxz(Dz) =

(〈〈
Ĉxz,F

〉
−(1,3)

, Dz

〉
2,4;1,2

+
〈〈
B̂x, B̂z

〉
−(1,3)

, Dz

〉
4,2;1,2

)
,(4.28)

Ĥyz(Dz) =

(〈〈
Ĉyz,F

〉
−(2,3)

, Dz

〉
2,4;1,2

+
〈〈
B̂y, B̂z

〉
−(2,3)

, Dz

〉
4,2;1,2

)
,

where Ĉxy = A · (X⊥, Y⊥, Z) , Ĉxz = A · (X⊥, Y, Z⊥), and Ĉyz = A · (X,Y⊥, Z⊥).
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A · (X, Y, Z)

A · (X⊥, Y, Z)

A · (X, Y⊥, Z)

A · (X⊥, Y⊥, Z)

A · (X, Y, Z⊥)

A · (X⊥, Y, Z⊥)

A · (X, Y⊥, Z⊥)

A · (X⊥, Y⊥, Z⊥)

Fig. 4.1. Illustration of the partial contractions in the Hessian. For better visibility, we have
slided part of the tensor Â to the right.

In the coordinate representation (4.25), the Grassmann gradient (4.15)–(4.17) is
given by

(4.29) ∇Φ̂ =
(
XT

⊥Φx, Y T
⊥Φy, ZT

⊥Φz
)

=
(〈
B̂x,F

〉
−1
,
〈
B̂y,F

〉
−2
,
〈
B̂z,F

〉
−3

)
.

It is known [6] that, in general, the objective function (4.9) is not concave. In fact, it
is easy to construct nonconcave examples using the coordinate representation of the
Hessian.

Proposition 4.1. The maximization problem (4.9) can have local maxima.
Proof. Consider the 2× 2× 2 tensor

A(:, :, 1) =
(

1 0
0 0

)
, A(:, :, 2) =

(
0 0
0 8

)
,

and let x = y = z = e1. The gradient is equal to zero, and the Hessian is −I ∈ R3×3

so that the point (x, y, z) is a local maximum. Clearly, it is not a global maxi-
mum.

4.4. Interpretation of operators in the Hessian. The Hessian operator Ĥ
consists of partial contractions involving the tensors

A · (X,Y, Z) , A · (X⊥, Y, Z) , A · (X,Y⊥, Z) , A · (X,Y, Z⊥) ,

A · (X⊥, Y⊥, Z) , A · (X⊥, Y, Z⊥) , A · (X,Y⊥, Z⊥) .

These are blocks of the tensor Â = A · ((X X⊥), (Y Y⊥), (Z Z⊥)). The only block in
Â that does not occur in Ĥ is A · (X⊥, Y⊥, Z⊥). Â is illustrated in Figure 4.1.

The partial contractions 〈·, ·〉−p are matrices, whose elements are inner products
between the slices in a subtensor. In Figure 4.1, we illustrate the inner products in
Ĥxx. In the off-diagonal operators, the inner products are between fibers in subten-
sors. For instance, in Ĥxy, the inner products in 〈Ĉxy,F〉−(1,2) are between fibers,
illustrated with the symbol, from A · (X⊥, Y⊥, Z) and A · (X,Y, Z). Simi-
larly, the elements of 〈B̂x, B̂y〉−(1,2) are inner products between the fibers from
A · (X⊥, Y, Z) and A · (X,Y⊥, Z).
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4.5. Matricizing the Hessian operator. It is now straightforward to matri-
cize the operators in the Hessian and vectorize Dx, Dy, and Dz to obtain a standard
matrix-vector linear system.

The “xx” block in (4.27) has the form

(4.30) Ĥxx(Dx) =
〈
B̂x, B̂x

〉
−1
Dx −Dx 〈F ,F〉−1 .

Observing that the contracted tensors are matrices and with straightforward vector-
ization of matrix products [13, Chapter 4.3], we get

vec
(
Ĥxx(Dx)

)
=
(
I ⊗

〈
B̂x, B̂x

〉
−1

+ 〈F ,F〉−1 ⊗ I
)
dx ≡ Ĥxxdx,

where dx = vec(Dx). The other diagonal blocks are treated analogously.
The off-diagonal blocks in (4.28) consist of two 4-tensors acting on matrices. The

“xy” block is given by

Ĥxy(Dy) =
(〈
Ĥ1
xy , Dy

〉
2,4;1,2

+
〈
Ĥ2
xy, Dy

〉
4,2;1,2

)
,

where Ĥ1
xy = 〈Ĉxy,F〉−(1,2) and Ĥ2

xy = 〈B̂x, B̂y〉−(1,2). In Ĥ1
xy, we map the first and

third modes to the rows and second and fourth modes to the columns of the matrix.
In Ĥ2

xy, the ordering of the row modes is the same, but the column modes are four
and two. The vectorized form of the operation Ĥxy(Dy) is

vec
(
Ĥxy(Dy)

)
=
(
Ĥ1 (1,3;2,4)
xy + Ĥ2 (1,3;4,2)

xy

)
dy ≡ Ĥxydy,

where dy = vec(Dy).
After matricizing all blocks of Ĥ and vectorizing the gradients, we obtain the

matrix form for the Newton equation

(4.31) Ĥd =

⎛
⎜⎝
Ĥxx Ĥxy Ĥxz

Ĥyx Ĥyy Ĥyz

Ĥzx Ĥzy Ĥzz

⎞
⎟⎠
⎛
⎝dxdy
dz

⎞
⎠ = −

⎛
⎝gxgy
gz

⎞
⎠ = −g,

where gx = vec(〈B̂x,F〉−1), gy = vec(〈B̂y,F〉−2), and gz = vec(〈B̂z,F〉−3) are the
vectorized gradients from (4.29).

4.6. Generalizing to higher order tensors. Note that the representations
for the Grassmann gradient and Hessian in section 4.2 can easily be generalized to
the case of 4-tensors and higher. Assume that the objective function Φ(X,Y, Z,W ) =
1
2‖A·(X,Y, Z,W ) ‖F is to be maximized over a product of four Grassmann manifolds.
Then the diagonal operators in the Hessian (4.24) have to be modified by introducing
an extra matrix W , i.e., we put Bx = A · (I, Y, Z,W ), etc., and then we add a fourth
diagonal block

Hww(Δw) = ΠW 〈Bw,Bw〉−4 Δw −Δw 〈F ,F〉−4 ,

where now F = A·(X,Y, Z,W ) and Bw = A·(X,Y, Z, I). The off-diagonal operators
are modified analogously. For instance,

Hxw(Δw) = ΠX

(〈
〈Cxw,F〉−(1,4) ,Δw

〉
2,4;1,2

+
〈
〈Bx,Bw〉−(1,4) ,Δw

〉
4,2;1,2

)
,

where Bx and Bw are as above and Cxw = A ·(I, Y, Z, I). The modification needed for
the gradient is one additional term: ΠWΦw, which is a simple modification of (4.13).
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5. Implementation and experimental results. Given the analysis from the
previous section together with the TensorToolbox [2], the algorithmic implementation
in MATLAB is straightforward. A pseudocode is given in Algorithm 1. See also
Appendix B for details on computational complexity.

Algorithm 1 NG algorithm.

Given tensor A and starting points (X0, Y0, Z0) ∈ Gr3

repeat
compute Grassmann gradient ∇Φ̂ given in (4.29)
compute Grassmann Hessian Ĥ from (4.26)
matricize Ĥ and vectorize ∇Φ̂ to form NG equations (4.31)
solve D = (Dx, Dy, Dz) from the Newton equation on the tangent spaces
take a geodesic step along the direction given by D to obtain new iterates (X,Y,Z)

until ‖∇Φ̂‖/Φ < TOL.

In this section, we report the results of some preliminary numerical experiments
where we compare the NG algorithm with higher order orthogonal iteration (HOOI)
[6]. Each HOOI iteration consists of three steps, where, in each step, two of the
unknown matrices are considered as fixed and the third is updated. But, first, we
would like to make a few remarks on the convergence of HOOI, which is related to
the alternating least square (ALS) method [18].

The sequence of iterates generated by HOOI, and other ALS methods, converge
asymptotically linearly, proved by Ruhe and Wedin [22], to a point. But this point
need not be a local stationary point of the considered objective function [20, pp. 53–
54], [21]. Thus, as an algorithm, HOOI is not guaranteed to converge to a local
minimizer. This scenario was, in fact, occasionally encountered during our tests.
Further, the two algorithms NG and HOOI need not converge to the same local
minimizer (under the assumption that HOOI does converge to a local minimizer).
This was also encountered during our tests.

5.1. Test 1—signal and noise tensors. Our first experiment was tailored to
simulate a “signal tensor” with low rank and added normally distributed noise. We
used two 20× 20× 20 tensors A1 = B1 + ρE1 and A2 = B2 + ρE2, where we chose B1

and B2 as random tensors with ranks (10, 10, 10) and (15, 15, 15), respectively. Thus,
B1 was constructed from a 10 × 10 × 10 tensor with normally distributed (N(0, 1))
elements; that tensor was then projected up to dimension 20×20×20 by multiplying
it in each mode by a 20× 10 matrix with orthonormal columns. The elements of the
noise tensors E1 and E2 were chosen normally distributed (N(0, 1)), and the level of
noise was controlled by ρ, which was taken equal to 0.1. In both cases, we computed
a rank-(5, 5, 5) approximation. As initial iterates we chose random matrices with
orthonormal columns and performed 10 HOOI iterations before the NG method was
started. The plots marked with NG-1 and NG-2 in Figure 5.1 show the convergence
history of both methods. Observe that the initial points are the same, therefore, the
two plots are on top of each other for the first 10 iterations.

5.2. Test 2—random tensors. We approximated two random 20 × 20 × 20
tensors (the elements were in N(0, 1)) by a rank-(5, 5, 5) tensor. Both algorithms
were initialized by HOSVD, and we performed 20 HOOI iterations before NG was
employed. The plots NG-3 and NG-4 in Figure 5.1 show the convergence history.
The quadratic convergence of the NG algorithm is clearly visible.
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Fig. 5.1. Convergence history—iterations versus the relative gradient norm ‖∇Φ̂‖/Φ. All tests
are rank-(5, 5, 5) approximations of 20× 20× 20 tensors. NG-1 : signal tensor with rank-(10, 10, 10)
and noise. NG-2: signal tensor with rank-(15, 15, 15) and noise. NG-3 and NG-4: random tensors.
The 20 initial HOOI iterations for these two tests are omitted for clarity.

5.3. Test 3—noncubic tensors. We also did a third set of tests, now with
tensors of dimension 25 × 30 × 20, which were approximated with tensors of rank-
(7, 3, 5). The first two tests were set up as in section 5.1, i.e., one case with a signal
tensor of rank-(10, 10, 10) and another case with a signal tensor of rank-(15, 15, 15),
same noise level ρ = 0.1. The NG method was initialized with random matrices and 10
HOOI iterations. Then two sets were set up as in section 5.2, i.e., with random tensors,
in which the NG algorithm was initiated with HOSVD and 20 HOOI iterations. The
corresponding plots were very similar to those given in Figure 5.1.

5.4. Comments on more tests and relative fit. In our experience, the HOOI
method may have an acceptable convergence rate for low-rank signal tensors with noise
of small magnitude. In general, the closer the rank of the approximating tensor to
the correct rank of the signal tensor, the faster the convergence.

We performed tests where the ranks of the “signal tensor” and the approximating
tensor coincided. Then, for values of ρ less than or approximately equal to 0.1, the
convergence of HOOI was very rapid. In these tests, there was a clear gap in the higher
order singular values (see Theorem 2.4), indicating a relation of the convergence rate
in HOOI to the gap at the cut-off level.

On the other hand, approximating a full rank tensor with HOOI can have very
slow convergence. For example, the HOOI run, with the same initial iterates as NG-3
shown in Figure 5.1, requires more than 800 iterations to achieve the same accuracy
as NG does in 6 iterations. In some cases, HOOI also requires a large number of
iterations before the convergence is stabilized to a constant linear rate.

The relative fit ‖A−B‖/‖A‖, where B is the approximating tensor of lower rank,
was in the order 0.3–0.8 for the performed tests. The fit depends on the rank and the
dimensions of the original tensor, the rank of the approximating tensor, and the noise
level.

Considering the subspace angles between the final iterate and all previous iterates,
both algorithms generate plots very similar to those given in Figure 5.1.
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5.5. Computational complexity. Naturally, the price to be paid for the fast
convergence of the NG method is a higher computational cost per iteration. Assume,
for simplicity, that we have an n×n×n tensor which is approximated by an r× r× r
tensor. Each iteration in HOOI involves six tensor by matrix products and three
maximization problems, e.g., A · (I, Y, Z) and

max
XTX=I

∥∥∥XTA(1)(Y ⊗ Z)
∥∥∥ .

The solution is the dominant r-dimensional left singular subspace of the matrix
A(1)(Y ⊗ Z), which we assume is computed with SVD [10, section 5.4.5]. Then,
the approximate amount of flops (floating point additions and multiplications) per
iteration is 6n3r for the tensor-matrix product and 18nr4 + 33r6 for the dominant
subspace (based on the table in [10, section 5.4.5]; note that faster SVD algorithms
are available and will be implemented in the next version of LAPACK), which gives

flops(HOOI) ≈ 6n3r + 18nr4 + 33r6.

Each iteration in the NG algorithm is dominated by the solution of the Newton’s
equations (4.31), which amounts to

(5.1) flops(NG) ≈ 9(n− r)3r3.

This is for computing the Cholesky factorization of the 3(n− r)r× 3(n− r)r Hessian
matrix. The computation of the Hessian itself is of lower complexity:

(5.2) flops(Hessian) ≈ 18n3r + 12(n− r)2r3.

Details on how this expression was derived are given in Appendix B. Observe that, in
local coordinates, no tangent vectors are transported, only the iterates (Xk, Yk, Zk)
are moved along geodesics. The price for this is the computation of basis matricesX⊥,
Y⊥, and Z⊥ for the three tangent space at every point. The amount of computations
due to the geodesic movements on the Grassmann manifolds is negligible.

5.6. Optimization issues. In our formulation of problem (3.1), the original
constraints due to the manifold structure have been incorporated in the computa-
tion of the Grassmann gradient and the Grassmann Hessian of the objective function.
Together with the parametrization of section 4.3, the problem reduces to an uncon-
strained optimization problem. When solving this, one must deal with standard opti-
mization issues, such as obtaining good starting points, indefiniteness of the Hessian,
line search, etc.; see, e.g., [20] for details.

As is always the case with Newton’s method, the choice of a good starting point is
important. One obvious alternative is to start with X0, Y0, and Z0 given by the first
r1, r2, and r3 columns of the HOSVD matrices U , V , and W , respectively. But this
choice is often not good enough. In our experiments with random tensors, the Hessian
was almost always indefinite for points given by the HOSVD. When we, in addition,
performed initial HOOI iterations, then, within a reasonable amount of steps, we got
to the proximity of the local minimum where we could employ the Newton algorithm.
Alternatively, one could incorporate a trust region method together with the NG
method [14] or perform the initial steps with a conjugate gradient algorithm on the
product of Grassmann manifolds.
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6. Conclusion and future work. In this paper, we have formulated the tensor
approximation problem defined on the product of Grassmann manifolds and derived
Newton’s method for this problem. We have showed quadratic convergence of the
algorithm in the proximity of a local minimizer.

The general tensor matricization introduced in section 2.2, the contracted tensor
products, and the tensor algebraic identities from section 2.3 have been used both
for the analysis of the differentiated expressions of the objective function and for
the algorithmic implementation. The generalization from 3-tensors to higher order
tensors is straightforward with the presented tensor algebraic analysis.

Our present and future work include further analysis of the theoretical aspects
of the best approximation problem. For computational and memory efficiency, the
implementation details for the NG algorithms need to be investigated. An alternative
approach for this and similar problems, which we are presently pursuing, is to develop
quasi-Newton methods on (products of) Grassmann manifolds [23].

Appendix A. Proof of Lemma 2.3. To prove the identities, we will use the
definition for a contracted tensor product to verify that elements of the resulting
matrices in both sides are the same. Let j < i and assume we have the following
dimensions:

B ∈ R
K1×···×Kj×···×Ki×···×KN ,

Q ∈ R
Kj×Lj .

The dimensions of the modes of tensor C are assumed to be the same as those in B,
except modes j and i, which are taken to be Lj and Li. We will show that

(A.1)
〈
B · (Q)j , C

〉
−i

=
〈
〈B, C〉−(i,j) , Q

〉
1,3;1,2

.

Then, for the first argument on the left-hand side, we have

B · (Q)j =: D ∈ R
K1×···×Lj×···×Ki×···×KN ,

where the elements are given by

dk1···lj ···ki···kN =
∑
kj

ak1···kj ···ki···kN qkj lj .

The expression on the left-hand side of (A.1) becomes

〈D, C〉−i =: E ∈ R
Ki×Li ,

where the entries are

ekili =
∑

k1,...,kj−1,lj
kj+1,...,ki−1
ki+1,...,kN

dk1···lj ···ki···kN ck1···lj ···li···kN

=
∑

k1,...,kj ,lj
kj+1,...,ki−1
ki+1,...,kN

ak1···kj ···ki···kN qkj lj ck1···lj ···li···kN

=
∑
kj ,lj

qkj lj

∑
k1,...,kj−1
kj+1,...,ki−1
ki+1,...,kN

ak1···kj ···ki···kN ck1···lj ···li···kN ,

which shows that (A.1) holds. The other cases are analogous.
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Appendix B. Computation of the gradient and the Hessian. The com-
putation of the gradient ∇Φ̂ from (4.29) and the Hessian Ĥ from (4.26) involve the
following terms: F = A · (X,Y, Z) and

B̂x = A · (X⊥, Y, Z) , B̂y = A · (X,Y⊥, Z) , B̂z = A · (X,Y, Z⊥) ,

Ĉxy = A · (X⊥, Y⊥, Z) , Ĉxz = A · (X⊥, Y, Z⊥) , Ĉyz = A · (X,Y⊥, Z⊥) .

For efficiency, the computation of these terms are arranged into a series8 of tensor
times matrix multiplies. These computations amount to 18n3r flops, where we ap-
proximate (n− r) ≈ n and omit terms of lower complexity. This gives the first term
in (5.2).

Given the B̂∗ and Ĉ∗∗ tensors, there follow contracted tensor products in two
modes between 3-tensors yielding matrices

〈F ,F〉−1 , 〈F ,F〉−2 , 〈F ,F〉−3 ,〈
B̂x,F

〉
−1
,

〈
B̂y,F

〉
−2
,

〈
B̂z,F

〉
−3
,〈

B̂x, B̂x
〉
−1
,

〈
B̂y, B̂y

〉
−2
,

〈
B̂z, B̂z

〉
−3
,

and contracted tensor products in one mode between 3-tensors yielding 4-tensors〈
B̂x, B̂y

〉
−(1,2)

,
〈
B̂x, B̂z

〉
−(1,3)

,
〈
B̂y, B̂z

〉
−(2,3)

,〈
Ĉxy,F

〉
−(1,2)

,
〈
Ĉxz,F

〉
−(1,3)

,
〈
Ĉyz,F

〉
−(2,3)

.

The contribution to the second term in (5.2) comes from the computation of the 4-
tensors. The computations of the matrices, which are involved in the gradient, are
negligible.
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INEXACT KLEINMAN–NEWTON METHOD FOR RICCATI
EQUATIONS∗

F. FEITZINGER† , T. HYLLA† , AND E. W. SACHS‡

Abstract. In this paper we consider the numerical solution of the algebraic Riccati equation
using Newton’s method. We propose an inexact variant which allows one control the number of the
inner iterates used in an iterative solver for each Newton step. Conditions are given under which the
monotonicity and global convergence result of Kleinman also hold for the inexact Newton iterates.
Numerical results illustrate the efficiency of this method.
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1. Introduction. The numerical solution of Riccati equations for large scale
feedback control systems is still a formidable task. In order to reduce computing time
in the context of Kleinman–Newton methods, it is mandatory that one uses iterative
solvers for the solution of the linear systems occurring at each iteration.

In such an approach, it is important to control the accuracy of the solution of
the linear systems at each Newton step in order to gain efficiency, but not to lose the
overall fast convergence properties of Newton’s method. This can be achieved in the
framework of inexact Newton’s methods.

In his classical paper, Kleinman [13] applied Newton’s method to the algebraic
Riccati equation, a quadratic equation for matrices of the type:

ATX +XA−XBBTX + CTC = 0,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n.
At each Newton step, a Lyapunov equation

Xk+1

(
A−BBTXk

)
+
(
A−BBTXk

)T
Xk+1 = −XkBB

TXk − CTC

needs to be solved to obtain the next iterate Xk+1.
In the literature, several variants of this method have been proposed. The ap-

proach taken by Banks and Ito [1] suggests to apply Chandrasekhar’s method for
the initial iterates and then use the computed iterate as a starting matrix for the
Kleinman–Newton method. Rosen and Wang [25] apply a multilevel approach to
the solution of large scale Riccati equations. Navasca and Morris [19], [20] use the
Kleinman–Newton method with a modified ADI method for the Lyapunov solvers to
find the feedback gain matrix directly for a discretized version of a parabolic optimal
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control problem. They also consider a version where the gain matrix is computed
directly.

Benner and his co-authors use variants of the Kleinman–Newton algorithm to
solve Riccati equations in their papers [2], [4], [5]. They utilize ADI methods for solv-
ing the Lyapunov equations at each step and address issues like parameter selection
for ADI and parallelization among others. Incorporating line searches in a Newton
procedure can often lead to a reduction in the number of iterations. This has been
the focus of the research in Benner and Byers [3] and Guo and Laub [11]. The case,
when the Jacobian of the nonlinear map describing the Riccati equation is singular
at the solution, has been considered by Guo and Lancaster in [10].

In a recent paper Burns, Sachs, and Zietsman [6] give conditions under which the
Kleinman–Newton method is mesh independent, i.e., the number of iterates remains
virtually constant when the discretization of the underlying optimal control problem
is refined.

Large scale Lyapunov equations usually require the use of iterative solvers like
Smith’s method or versions of the ADI method; for systems like this, the inexact
Newton’s method gives a rigorous guideline for the termination of the inner iteration
for the Lyapunov equation while retaining the fast local rate of convergence. Another
major effect in saving computing time is the possibility to terminate the inner iteration
early when the iterates Xk are still far away from the solution of the Riccati equation.
For a discussion on these methods see, for example, Kelley [12].

Whereas these aspects are typical for inexact Newton methods, the application
to a Riccati equation bears some special features. Kleinman observed that the con-
vergence is more global than usual; i.e., the starting matrix X0 does not need to lie in
a neighborhood of the solution X∞. The proof is based on monotonicity properties
of the iterates Xk as pointed out below. Obviously, this monotonicity is lost, when
the iterates Xk are computed inexactly and, as a consequence, the global convergence
feature of Kleinman–Newton does no longer hold. In this paper we also address the
question, under which conditions the monotone convergence behavior and, hence, the
larger convergence radius is maintained for the inexact Kleinman–Newton method.

The paper is organized as follows: In the next section we state the well-known
convergence results for the exact Kleinman–Newton method in the case of Riccati
equations and for the inexact Newton method in the general case. In the following
section we formulate the inexact Newton method applied to the Riccati equation and
give the convergence statement. Section 4 contains convergence results of the inexact
Kleinman–Newton method including monotonicity statements for the iterates. This
is achieved under certain assumptions on the residuals of the inexact Lyapunov solver.
A condition on the size of the residual guarantees that the inexact Newton iterates
are well defined. A stronger condition on the residuals yields the quadratic rate
of convergence. The assumption on the starting data is the same as for the exact
Kleinman–Newton method.

In section 5 we consider several iterative solvers for the Lyapunov equations like
Smith’s method and variants of the ADI method. We show how the previous con-
ditions for the monotone convergence relate to the iterative solvers. This is followed
by a section on numerical results for a discretized two-dimensional parabolic con-
trol problem. The convergence is illustrated and the savings in computing time is
documented. The last section deals with another variant of the Kleinman–Newton
method. We show that the inexact version of this method is unstable. The residuals
accumulate as the iteration progresses, and, hence, this version should not be used in
an inexact framework.
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2. Inexact Newton method. The algebraic Riccati equation presented in the
introduction can be written as a nonlinear system of equations.

The goal is to find a symmetric matrix X ∈ Rn×n with F(X) = 0, where the
map F : Rn×n → Rn×n is defined by

(2.1) F(X) = ATX +XA−XBBTX + CTC.

If one applies Newton’s method to this system, one has to compute the derivative at
X , symmetric, given by

F ′(X)(Y ) = ATY + Y A− Y BBTX −XBBTY
=
(
A−BBTX)T Y + Y

(
A−BBTX) ∀ Y ∈ R

n×n.(2.2)

In Newton’s method, the next iterate is obtained by solving the Newton system

(2.3) F ′(Xk)(Xk+1 −Xk) = −F(Xk) or F ′(Xk)Xk+1 = F ′(Xk)Xk − F(Xk).

For the Riccati equation the computation of a Newton step requires the solution of a
Lyapunov equation. Corresponding to the second part of (2.3) we obtain

(2.4) Xk+1

(
A−BBTXk

)
+
(
A−BBTXk

)T
Xk+1 = −XkBB

TXk − CTC,
which is a Lyapunov equation for Xk+1. This method is well understood and ana-
lyzed. It does not only exhibit locally a quadratic rate of convergence, but has also
a monotone convergence property which is not so common for Newton’s method and
which is due to the quadratic form of F and the monotonicity of F ′. For this to hold,
we introduce and impose the following definition and assumption:

Definition 2.1. Let A ∈ R
n×n, B ∈ R

n×m, and C ∈ R
l×n. A pair (A,BBT )

is called stabilizable if there is a feedback matrix K ∈ Rn×n such that A− BBTK is
stable, which means that A − BBTK has only eigenvalues in the open left halfplane.
(CTC,A) is called detectable if and only if (AT , CTC) is stabilizable.

In the following sections we make the assumption:
Assumption 2.2. (A,BBT ) is stabilizable and (CTC,A) is detectable.
Note that by [14, Lemma 4.5.4] the first assumption implies the existence of a

matrix X0 such that A−BBTX0 is stable.
As a common abbreviation we set

Ak :=
(
A−BBTXk

)
, k ∈ N0

and A ≤ B means that the matrix A − B is negative semidefinite. Then the next
theorem is well known; see, e.g., Kleinman [13], Mehrmann [18], or Lancaster and
Rodman [14].

Theorem 2.3. Let X0 ∈ Rn×n be symmetric and positive semidefinite such that
A − BBTX0 is stable and let Assumption 2.2 hold. Then the Newton iterates Xk

defined by

Xk+1Ak +ATkXk+1 = −XkBB
TXk − CTC

converge to some X∞ such that A−BBTX∞ is stable, and it solves the Riccati equa-
tion F(X∞) = 0. Furthermore, the iterates have a monotone convergence behavior

0 ≤ X∞ ≤ · · · ≤ Xk+1 ≤ Xk ≤ · · · ≤ X1

and quadratic convergence.
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In the past decade, a variant of Newton’s method has become quite popular in
several areas of applications, the so-called inexact Newton’s method. In this variant,
it is no longer necessary to solve the Newton equation exactly for the Newton step,
but it is possible to allow for errors in the residual. In particular, this is useful if
iterative solvers are used for the solution of the linear Newton equation. We cite a
theorem in Kelley [12, p. 99].

Theorem 2.4. Let F : RN → RN have a Lipschitz-continuous derivative in a
neighborhood of some x∞ ∈ RN with F (x∞) = 0 and F ′(x∞) invertible. Then there
exist δ > 0 and η̄ such that for all x0 ∈ B(x∞, δ) the inexact Newton iterates

xk+1 = xk + sk,

where sk satisfies

‖F ′(xk)sk + F (xk)‖ ≤ ηk‖F (xk)‖, ηk ∈ [0, η̄]

converge to x∞. Furthermore, we have the following rate estimates:
The rate of convergence is at least linear. If, in addition, ηk → 0, then we obtain

a superlinear rate and if ηk ≤ Kη‖F (xk)‖ for some Kη > 0, then we have a quadratic
rate of convergence.

Our goal in this paper is to analyze how we can apply the last theorem to the
Riccati equation and extend the convergence Theorem 2.3 to the inexact Kleinman–
Newton method. This seems to be promising, especially for this application, since the
resulting linear Newton equations are Lyapunov equations which are usually solved
iteratively by Smith’s method or versions of the ADI method.

3. Inexact Kleinman–Newton method. Here we introduce for Riccati equa-
tions the inexact Kleinman–Newton method in the context presented in the previous
chapter. Formally, the new iterate is determined by solving

(3.1) F ′(Xk)(Xk+1 −Xk) + F(Xk) = Rk

for Xk+1. This can be written more explicitly as a solution of Xk+1

Xk+1Ak +ATkXk+1 = −XkBB
TXk − CTC +Rk.(3.2)

Before we come to the convergence properties, we recall an existence and uniqueness
theorem for Lyapunov equations, which need to be solved at each step of the algorithm.

Theorem 3.1. If A ∈ Rn×n is stable, then for each Z ∈ Rn×n the Lyapunov
equation

ATY + Y A− Z = 0

is uniquely solvable and its solution is given by

Y = −
∫ ∞

0

eA
T tZeAtdt.

For a proof see [14, Theorem 8.5.1].
Before we state the convergence theorem, we summarize the algorithm proposed.
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Inexact Kleinman–Newton algorithm.
Step 0: Choose X0 and set k = 0.
Step 1: Determine a solution Xk+1,

which solves the Lyapunov equation up to a residual Rk
Xk+1Ak +ATkXk+1 = −XkBB

TXk − CTC +Rk.
Step 2: Set k = k + 1 and return to Step 1.

We can formulate the local convergence properties of this method by applying
the standard theorem from the previous section.

Theorem 3.2. Let X∞ ∈ Rn×n be a symmetric solution of (2.1) such that
A − BBTX∞ is stable. Then there exist δ > 0 and η̄ > 0 such that for all starting
values X0 ∈ Rn×n with ‖X0 − X∞‖ ≤ δ the iterates Xk of the inexact Kleinman–
Newton algorithm converge to X∞, if the residuals Rk satisfy

(3.3) ‖Rk‖ ≤ ηk‖F(Xk)‖ = ηk
∥∥ATXk +XkA−XkBB

TXk + CTC
∥∥ .

The rate of convergence is linear if ηk ∈ (0, η̄], it is superlinear if ηk → 0, and
quadratic if ηk ≤ Kη‖F(Xk)‖ for some Kη > 0.

Proof. We apply Theorem 2.4 to the equation F(X) = ATX +XA−XBBTX +
CTC = 0. This map is differentiable and has a Lipschitz continuous derivative. Since
A−BBTX∞ is assumed to be stable, F ′(X∞)Y = 0 implies Y = 0 by Theorem 3.1,
and, hence, F ′(X∞) is an invertible linear map. Since all assumptions in Theorem 2.4
hold, the conclusions can be applied and yield the statements in the theorem.

4. Monotone convergence properties. An interesting fact about the Klein-
man–Newton method is that the iterates exhibit monotonicity and a global conver-
gence property, once the initial iterate X0 is symmetric, positive semidefinite, and A0

is stable. These properties are not common for Newton methods and depend on appli-
cations of the concavity and monotonicity results; see also Damm and Hinrichsen [7]
or Ortega and Rheinboldt [21]. For the inexact version, these identities are perturbed
and those results are much harder to obtain. In order to retain these properties, we
have to impose certain conditions on the residuals.

Let us summarize at first a few monotonicity properties for the Lyapunov
operators.

Theorem 4.1. The map F is concave in the following sense:

F ′(X)(Y −X) ≥ F(Y )−F(X) for all symmetric X,Y ∈ R
n×n.(4.1)

Proof. The proof follows easily from an identity due to the quadratic nature of
the Riccati equation:

(4.2) F(Y ) = F(X) + F ′(X)(Y −X) +
1
2
F ′′(X)(Y −X,Y −X),

where the quadratic term

(4.3)
1
2
F ′′(Z)(W,W ) = −WBBTW

is independent of Z.
Theorem 4.2. Let A−BBTX be stable. Then

Z = F ′(X)(Y )⇐⇒ Y = −
∫ ∞

0

e(A−BBTX)T
tZe(A−BBTX)tdt(4.4)

and, hence, F ′(X)(Y ) ≥ 0 implies Y ≤ 0.
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Proof. We have

Z = F ′(X)(Y ) =
(
A−BBTX)T Y + Y

(
A−BBTX) .

Since (A−BBTX) is stable, Theorem 3.1 yields the result.
The next theorem shows that we can weaken the condition on the starting point

and that the inexact Kleinman–Newton iteration is still well defined.
Theorem 4.3. Let Xk be symmetric and positive semidefinite such that A −

BBTXk is stable and

Rk ≤ CTC(4.5)

holds. Then
(i) the iterate Xk+1 of the inexact Kleinman–Newton method is well defined,

symmetric and positive semidefinite,
(ii) and the matrix A−BBTXk+1 is stable.
Proof. The inexact Newton step (3.1) is given by the solution of a Lyapunov

equation

Xk+1Ak +ATkXk+1 = −XkBB
TXk − CTC +Rk.

Since Ak is stable, the unique solution Xk+1 exists and is symmetric by Theorem 3.1.
Furthermore, requirement (4.5) leads to

Xk+1Ak +ATkXk+1 ≤ 0

and Theorem 4.2 implies Xk+1 ≥ 0. Equation (3.2) is equivalent to

Xk+1Ak+1 +ATk+1Xk+1 =− CTC −Xk+1BB
TXk+1(4.6)

− (Xk+1 −Xk)BBT (Xk+1 −Xk) +Rk =: W.

We define W as the right side of (4.6).
Let us assume Ak+1x = λx for λ with Re(λ) ≥ 0 and x 
= 0. Then (4.6) implies

(λ̄+ λ)x̄TXk+1x = x̄TATk+1Xk+1x+ x̄TXk+1Ak+1x = x̄TWx.

On the one hand, the definition ofW combined with requirement (4.5) leads toW ≤ 0.
On the other hand, Xk+1 ≥ 0 implies x̄TWx = 0. Using the definition of W and a
similar argument as before again, we obtain

x̄T (Xk+1 −Xk)BBT (Xk+1 −Xk)x = 0.(4.7)

Since BBT ≥ 0 we have BT (Xk+1 −Xk)x = 0, and, hence, BBTXk+1x = BBTXkx,
so that by definition of Ak, Ak+1

Ak+1x = Akx = λx,

contradicting the stability of Ak. Hence, Ak+1 is also stable.
The requirements on the residuals can be weakened, e.g.,

Rk ≤ CTC +XjBB
TXj j = k, k + 1(4.8)

will also provide the previous proof.
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In the following theorem we show under which requirements the monotonicity of
the iterates Xk can be preserved also for the inexact Kleinman–Newton method.

Theorem 4.4. Let Assumption 2.2 be satisfied and let X0, symmetric and positive
semidefinite, be such that A0 is stable. Assume that (4.5) and

(4.9) 0 ≤ Rk ≤ (Xk+1 −Xk)BBT (Xk+1 −Xk)

hold for all k ∈ N. Then the iterates (3.2) satisfy
(i) lim

k→∞
Xk = X∞ and 0 ≤ X∞ ≤ · · · ≤ Xk+1 ≤ Xk ≤ · · · ≤ X1,

(ii) (A−BBTX∞) is stable and X∞ is the maximal solution of F(X∞) = 0,
(iii) ‖Xk+1 −X∞‖ ≤ c‖Xk −X∞‖2, k ∈ N.
Proof. i) Using the definition of an inexact Newton step and (4.2)

Rk = F ′(Xk)(Xk+1 −Xk) + F(Xk)
= F(Xk+1) + (Xk+1 −Xk)BBT (Xk+1 −Xk).

This can be inserted into the next Newton step

F ′(Xk+1)(Xk+2 −Xk+1) = −F(Xk+1) +Rk+1

= Rk+1 −Rk + (Xk+1 −Xk)BBT (Xk+1 −Xk) ≥ Rk+1 ≥ 0

by assumption (4.9). Then from Theorem 4.2 we can infer

Xk+2 −Xk+1 ≤ 0, k = 0, 1, 2, . . .

Therefore, (Xk)k∈N is a monotone sequence of symmetric and positive semidefinite
matrices and Xk ≥ 0 due to Theorem 4.3. Hence, it is convergent to some symmetric
and positive semidefinite limit matrix

lim
k→∞

Xk = X∞.

ii) Passing to the limit in (3.1) and (4.9) we deduce that X∞ satisfies the Riccati
equation, X∞ ≤ Xk and F(X∞) = 0.

We show that X∞ is the maximal symmetric solution of the Riccati equation
(2.1), which means X∞ ≥ X for every symmetric solution X of (2.1). For this to hold
we assume that X is a symmetric solution of the Riccati equation. Then Theorem 4.1
and (4.2) imply

F ′(Xk)(X −Xk) ≥−F(Xk) = −F(Xk−1)−F ′(Xk−1)(Xk −Xk−1)

− 1
2
F ′′(Xk−1)(Xk −Xk−1, Xk −Xk−1) ≥ −Rk−1.

Therefore, there exists Qk ≥ 0 with

F ′(Xk)(X −Xk) = Qk −Rk−1,

and since Ak is stable Theorem 3.1 implies

X −Xk = −
∫ ∞

0

eA
T
k t(Qk −Rk−1)eAktdt ≤

∫ ∞

0

eA
T
k tRk−1e

Aktdt.(4.10)

Passing to the limits leads to the desired result

X −X∞ ≤ 0
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and X∞ is the maximal solution. We can deduce from [14, Theorem 9.1.2] that the
matrix A−BBTX∞ is stable.

iii) To prove the quadratic rate of convergence we use the inexact Newton step

F ′(Xk)(Xk+1 −Xk) + F(Xk)−Rk = 0

and rewrite it using (4.2)

F ′(X∞)(Xk+1 −X∞) = F ′(X∞)(Xk+1 −X∞)−F(Xk+1) + F(X∞)
− ( F ′(Xk)(Xk+1 −Xk)−F(Xk+1) + F(Xk)) +Rk

= (Xk+1 −X∞)BBT (Xk+1 −X∞)
− (Xk+1 −Xk)BBT (Xk+1 −Xk) + Rk.

Since A∞ := (A−BBTX∞) is stable, Theorem 4.2 shows

0 ≤ Xk+1 −X∞ =
∫ ∞

0

eA
T
∞t
{− (Xk+1 −X∞)BBT (Xk+1 −X∞)

+ (Xk+1 −Xk)BBT (Xk+1 −Xk)−Rk
}
eA∞t dt

≤
∫ ∞

0

eA
T
∞t((Xk+1 −Xk)BBT (Xk+1 −Xk))eA∞t dt.

(4.11)

Note, that for all symmetric A,B ∈ Rn×n, A ≤ B implies ‖A‖2 ≤ ‖B‖2, due to

λmax(A) = max
‖x‖2=1

x̄TAx

x̄Tx
=
x̄T∗Ax∗
x̄T∗ x∗

≤ x̄T∗ Bx∗
x̄T∗ x∗

≤ max
‖x‖2=1

x̄TBx

x̄Tx
= λmax(B).

Taking norms in (4.11) we obtain due to the stability of A∞

(4.12) 4‖Xk+1 −X∞‖2 ≤ ‖Xk+1 −Xk‖22‖BBT ‖2
∫ ∞

0

∥∥eA∞t
∥∥

2

∥∥∥eAT
∞t
∥∥∥

2
dt

≤ c‖Xk+1 −Xk‖22,

and using the monotonicity of the iterates

(4.13) 0 ≤ Xk −Xk+1 ≤ Xk −X∞ ⇒ ‖Xk −Xk+1‖2 ≤ ‖Xk −X∞‖2,

and, therefore,

‖Xk+1 −X∞‖2 ≤ c‖Xk −X∞‖22,

which implies quadratic convergence in any matrix norm.
We impose several requirements on the residuals in Theorem 4.3 and Theorem 4.4.

Some of them restrict the size of Rk in dependence on the step, see (4.9) and (4.5); oth-
ers assume the positive definiteness. The first assumption on the size of the residuals
depends on the quantity Xk+1, which has to be computed by the iterative procedure.
However, the inequalities involved can be tested as the iteration for Xk+1 progresses.
The latter assumption is a condition, which the iterative Lyapunov solver has to
satisfy.
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5. Methods for solving the Lyapunov equation. There is a sizeable amount
of literature on how to solve Lyapunov equations with direct solvers and iterative
methods. In the inexact context we do not address direct Lyapunov solvers as pre-
sented in Laub [15], Roberts [24], or Grasedyck [8], but only iterative solvers, like
Smith’s [27], cyclic Smith(l) [23], or ADI methods [17]. In particular, we analyze
these solvers with respect to the additonal requirements for maintaining the mono-
tonicity as stated in the previous section.

Smith’s and the ADI method are iterative solvers, which can be used to solve
the Lyapunov equation at each Newton step. The inexact Newton method developed
previously allows for early termination of these iterations, because the convergence
criterion is not so stringent far away from the solution.

We review some basic properties of these methods.
Recall that at Newton iteration step k the following Lyapunov equation needs to

be solved:

F ′(Xk)(Xk+1 −Xk) + F(Xk) = 0,

or as in (3.2) we solve for X = Xk+1

(5.1) XAk +ATkX + Sk = 0

with a stable matrix Ak

Ak = A−BBTXk and Sk = XkBB
TXk + CTC.

This equation is equivalent to a Stein’s equation.
Lemma 5.1. Given any μ ∈ R−, then a solution X of the Lyapunov equation

(5.1) is also a solution of Stein’s equation and vice versa. Stein’s equation is

(5.2) X = ATk,μXAk,μ + Sk,μ

with

Ak,μ = (Ak − μI)(Ak + μI)−1, Sk,μ = −2μ(Ak + μI)−TSk(Ak + μI)−1.

Note that (5.1) is equivalent to

(Ak + μI)TX(Ak + μI)− (Ak − μI)TX(Ak − μI) = −2μSk,

and from this (5.2) follows, since Ak + μI is invertible for μ < 0 due to the stability
of Ak.

Smith’s method—here we consider a simple version with one shift—is a fixed
point iteration for (5.2) for given starting value Z(0)

k

Z
(l+1)
k = ATk,μZ

(l)
k Ak,μ + Sk,μ, l = 0, 1, . . . and μ < 0 fixed.

ADI method is a fixed point iteration for (5.2) for given starting value Z(0)
k

(5.3) Z
(l+1)
k = ATk,μl

Z
(l)
k Ak,μl

+ Sk,μl
, l = 0, 1, . . . and μl < 0 varies.

In practice, cyclic versions of both methods, where a given set of shift parameter
μ0, . . . , μs is used in a cyclic manner, became quite popular; see, e.g., [23] and [9].
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Since Smith’s method and the cyclic versions are special cases of the ADI method, we
consider the ADI method in the following statements.

Lemma 5.2. Let Zk be the solution of the Lyapunov equation (5.1) and let Z(l)
k

be an iterate of the ADI method. Then

(5.4) Z
(l+1)
k − Zk = ATk,μl

. . . ATk,μ0

(
Z

(0)
k − Zk

)
Ak,μ0 . . . Ak,μl

.

Proof. Recall that by Lemma 5.1 Zk satisfies a Stein’s equation for any μ ∈ R−;
hence, for all μl in the ADI method

Zk = ATk,μl
ZkAk,μl

+ Sk,μl
l = 0, 1, . . .

Therefore, we have for any l

Z
(l+1)
k −Zk = ATk,μl

Z
(l)
k Ak,μl

+Sk,μl
−(ATk,μl

ZkAk,μl
+ Sk,μl

)
= ATk,μl

(
Z

(l)
k − Zk

)
Ak,μl

.

If we apply this identity to Z(l)
k − Zk consecutively, then we obtain the statement of

the lemma.
To estimate the residual of the Lyapunov equation using some iterate from the

ADI method, we prove the following lemma.
Lemma 5.3. Let Z(l)

k be an iterate of the ADI method, and then for the residuals
of the Lyapunov equation we obtain

R
(l)
k := Z

(l)
k Ak +ATk Z

(l)
k + Sk

= ATk,μl−1
. . . ATk,μ0

(
Z

(0)
k Ak +ATkZ

(0)
k + Sk

)
Ak,μ0 . . . Ak,μl−1 .(5.5)

If, in particular, the initial residual R(0)
k is positive semidefinite, then all residuals

R
(l)
k are also positive semidefinite.

Proof. Note that

Z
(l)
k Ak +ATkZ

(l)
k + Sk = Z

(l)
k Ak +ATkZ

(l)
k − ZkAk −ATkZk

=
(
Z

(l)
k − Zk

)
Ak +ATk

(
Z

(l)
k − Zk

)
.

Next we insert (5.4) to obtain

Z
(l)
k Ak +ATk Z

(l)
k + Sk = ATk,μl−1

. . . ATk,μ0

(
Z

(0)
k − Zk

)
Ak,μ0 . . . Ak,μl−1Ak(5.6)

+ ATkA
T
k,μl−1

. . . ATk,μ0

(
Z

(0)
k − Zk

)
Ak,μ0 . . . Ak,μl−1 .

Since Ak and Ak,μ commute for any μ, we have

Z
(l)
k Ak +ATkZ

(l)
k + Sk

= ATk,μl−1
. . . ATk,μ0

((
Z

(0)
k − Zk

)
Ak +ATk

(
Z

(0)
k − Zk

))
Ak,μ0 . . . Ak,μl−1

from which (5.5) follows. From this equation we obtain the result that if the initial
residual is positive semidefinite, then this also holds for all residuals in the Lyapunov
equation using any ADI iterate.
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In particular, with the zero starting matrix we get the following.
Lemma 5.4. Let Z(0)

k = 0. Then the residuals of (5.1) for the ADI iterates satisfy

R
(l)
k ≥ 0.

Proof. The residuals of (5.1) for the iterates Z(l)
k of the ADI method are given by

Lemma 5.3:

R
(l)
k = Z

(l)
k Ak +ATkZ

(l)
k + Sk = ATk,μl−1

. . . ATk,μ0
SkAk,μ0 . . . Ak,μl−1 ≥ 0

since Sk = XkBB
TXk + CTC ≥ 0.

Lemma 5.5. Let us consider a cyclic ADI method with a finite set of shift pa-
rameter μ0, . . . , μs ∈ R−. If CTC is positive definite and Z

(0)
k = 0, there is lk such

that for all l ≥ lk
0 ≤ R(l)

k ≤ CTC
holds.

Proof. R
(l)
k ≥ 0 is proved in the previous Lemma. Furthermore, if CTC > 0,

there exists ζ > 0 such that for all x ∈ Cn

x̄TCTCx ≥ ζ‖x‖22.
We have ρ(Ak,μ) = maxλ∈σ(Ak) |λ−μλ+μ | < 1 for every μ ∈ R−. Due to the special
structure of the matrices Ak,μ, μ ∈ R−, it follows that

ρ(Ak,μ0 . . . Ak,μs) = max
λ∈σ(Ak)

∣∣∣∣∣
s∏
i=1

λ− μi
λ+ μi

∣∣∣∣∣ ≤
s∏
i=1

max
λ∈σ(Ak)

∣∣∣∣λ− μiλ+ μi

∣∣∣∣ < 1.

Therefore, a consistent matrix norm ‖ · ‖∗ exists with ‖Ak,μ0 . . . Ak,μs‖∗ < 1.
For l large enough (depending on k) we obtain with m := l mod (s+ 1)

∥∥∥R(l)
k

∥∥∥
2

=

∥∥∥∥∥∥∥∥
ATk,μm

. . . ATk,μ0
ATk,μs

. . . ATk,μ0
. . . ATk,μs

. . . ATk,μ0︸ ︷︷ ︸
	 l

s+1
 times

Sk

Ak,μ0 . . . Ak,μs . . . Ak,μ0 . . . Ak,μs︸ ︷︷ ︸
	 l

s+1 
 times

Ak,μ0 . . . Ak,μm

∥∥∥∥∥∥∥∥
2

≤ c‖Ak,μ0 . . . Ak,μs‖
2	 l

s+1 

2 ‖Sk‖2

≤ c∗‖Ak,μ0 . . . Ak,μs‖
2	 l

s+1
∗ ≤ ζ.
Hence, for all x ∈ Cn

x̄TR
(l)
k x ≤ ‖x‖22

∥∥∥R(l)
k

∥∥∥
2
≤ ζ‖x‖22 ≤ x̄TCTCx,

which is to be shown.
According to (4.8) it might be possible to introduce a weaker requirement com-

pared to the positive definiteness of the matrix CTC to achieve the same results.
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6. Numerical results. In this section we analyze the efficiency of the inex-
act Kleinman–Newton versions, developed in Theorem 3.2, compared to the standard
Kleinman–Newton method. Note that we concentrate on the local convergence proper-
ties and not on the monotonicity of the iterates. The efficiency of the inexact versions
cannot be tested without special consideration of the applied Lyapunov solver.

Many iterative solvers for Lyapunov equations are presented in the literature, e.g.,
Smith’s method [27], ADI method [17], and low-rank ADI methods [22], [16]. Other
iterative methods can be found in [9], [26], or [23].

In order to indicate the benefits of the inexact Kleinman–Newton method, we
implement Smith’s method, the ADI method, and a low-rank ADI version to solve
the Newton steps.

We consider an example arising from optimal control problems. The example has
been considered by Morris and Navasca [19] and is described as a two-dimensional
optimal control problem with parabolic partial differential equations including con-
vection:

min
u
J(u) =

1
2

∫ ∞

0

(‖ Cz(t) ‖22 + ‖ u(t) ‖22
)
dt

s. t.

∂z

∂t
=

∂z

∂x2
+

∂z

∂y2
+ 20

∂z

∂y
+ 100z = f(x, y)u(t) (x, y) ∈ Ω

z(x, y, t) = 0 (x, y) ∈ ∂Ω ∀t
with Ω = (0, 1)× (0, 1) and

f(x, y) :=

{
100 0.1 < x < 0.3 & 0.4 < y < 0.6,
0 else.

The discretization is carried out on a 23 × 23 grid and central differences are
used for the approximation. We choose C = (0.1, . . . , 0.1), X0 = 0. The optimal
matrix X∞ has been computed beforehand with a higher accuracy. We compare the
number of the Newton steps (outer), the number of inner iterations (inner) which
are needed to solve each Newton step, and the cumulative number of inner iterations
(cumul). According to Theorem 3.2 we test an inexact Kleinman–Newton version
with a superlinear rate of convergence. In Tables 6.1 and 6.2 we use Smith’s method

Table 6.1

Smith’s method: Exact Kleinman–Newton method.

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 97 97 7.639e + 005 3.495e + 001 1.056e + 003 3.484e + 004
2 211 308 1.911e + 005 2.333e + 001 6.677e − 001 1.911e − 002
3 144 452 4.794e + 004 1.755e + 001 7.521e − 001 3.224e − 002
4 83 535 1.213e + 004 1.453e + 001 8.279e − 001 4.719e − 002
5 66 601 3.172e + 003 1.245e + 001 8.571e − 001 5.901e − 002
6 49 650 8.973e + 002 9.594e + 000 7.704e − 001 6.187e − 002
7 66 716 2.357e + 002 4.481e + 000 4.671e − 001 4.869e − 002
8 58 774 1.801e + 001 5.031e − 001 1.123e − 001 2.505e − 002
9 43 817 8.544e − 002 4.162e − 003 8.272e − 003 1.645e − 002
10 33 850 8.230e − 004 1.263e − 005 3.036e − 003 7.457e − 001
11 21 871 3.281e − 008 6.488e − 010 5.135e − 005 4.149e + 000



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

284 F. FEITZINGER, T. HYLLA, AND E. W. SACHS

Table 6.2

Smith’s method: Inexact K-N method with superlinear convergence ηk = 1/(k3 + 1).

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 32 32 7.628e + 005 3.490e + 001 1.054e + 003 3.479e + 004
2 15 47 2.294e + 005 2.442e + 001 6.997e − 001 2.006e − 002
3 15 62 6.088e + 004 1.827e + 001 7.481e − 001 3.065e − 002
4 14 76 1.581e + 004 1.496e + 001 8.191e − 001 4.486e − 002
5 13 89 4.141e + 003 1.284e + 001 8.582e − 001 5.738e − 002
6 7 96 1.162e + 003 1.053e + 001 8.203e − 001 6.389e − 002
7 12 108 3.171e + 002 5.560e + 000 5.279e − 001 5.012e − 002
8 19 127 3.797e + 001 9.554e − 001 1.718e − 001 3.091e − 002
9 17 144 2.741e − 001 1.483e − 002 1.552e − 002 1.625e − 002
10 18 162 3.396e − 003 5.113e − 005 3.448e − 003 2.343e − 001
11 15 177 1.400e − 006 2.267e − 008 4.433e − 004 8.886e + 000
12 14 191 3.477e − 010 3.333e − 012 1.471e − 004 6.539e + 003

Table 6.3

ADI method: Exact Kleinman–Newton method.

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 24 24 7.639e + 005 3.495e + 001 1.056e + 003 3.484e + 004
2 20 44 1.911e + 005 2.333e + 001 6.677e − 001 1.911e − 002
3 22 66 4.794e + 004 1.755e + 001 7.521e − 001 3.224e − 002
4 22 88 1.213e + 004 1.453e + 001 8.279e − 001 4.719e − 002
5 21 109 3.172e + 003 1.245e + 001 8.571e − 001 5.901e − 002
6 20 129 8.973e + 002 9.594e + 000 7.704e − 001 6.187e − 002
7 22 151 2.357e + 002 4.481e + 000 4.671e − 001 4.869e − 002
8 27 178 1.801e + 001 5.031e − 001 1.123e − 001 2.505e − 002
9 34 212 8.544e − 002 4.162e − 003 8.272e − 003 1.645e − 002
10 32 244 8.230e − 004 1.263e − 005 3.036e − 003 7.457e − 001
11 24 268 3.273e − 008 6.273e − 010 4.965e − 005 4.012e + 000

Table 6.4

ADI method: Inexact K-N method with superlinear convergence ηk = 1/(k3 + 1).

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 13 13 7.639e + 005 3.495e + 001 1.056e + 003 3.484e + 004
2 4 17 1.911e + 005 2.334e + 001 6.677e − 001 1.911e − 002
3 5 22 4.794e + 004 1.755e + 001 7.520e − 001 3.224e − 002
4 5 27 1.213e + 004 1.453e + 001 8.279e − 001 4.719e − 002
5 6 33 3.175e + 003 1.249e + 001 8.597e − 001 5.918e − 002
6 3 36 9.542e + 002 1.109e + 001 8.882e − 001 7.112e − 002
7 8 44 2.073e + 002 3.978e + 000 3.586e − 001 3.232e − 002
8 5 49 1.829e + 001 5.119e − 001 1.287e − 001 3.235e − 002
9 11 60 1.037e − 001 5.069e − 003 9.903e − 003 1.935e − 002
10 16 76 9.042e − 004 1.502e − 005 2.962e − 003 5.966e − 001
11 16 92 4.119e − 007 3.114e − 009 2.073e − 004 1.416e + 001
12 15 107 1.905e − 010 1.087e − 012 3.491e − 004 1.165e + 005

for the Lyapunov solver, whereas in Tables 6.3 and 6.4 we apply the ADI method and
in Tables 6.5 and 6.6 its low-rank version. The shift parameters are determined with
a heuristic introduced by Penzl [23]. All computations were done within MATLAB.

In Table 6.7 we present a comparison of CPU times in order to test the efficiency
of the inexact versions. We include alternative stopping criteria for the inner iteration
which result according to Theorem 3.2 in a linear and a superlinear rate of convergence.
We observed for our examples a rather small linear convergence rate factor and a
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Table 6.5

Low-rank ADI method: Exact Kleinman–Newton method.

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 24 24 7.639e + 005 3.495e + 001 1.056e + 003 3.484e + 004
2 41 65 1.911e + 005 2.333e + 001 6.677e − 001 1.911e − 002
3 25 90 4.794e + 004 1.755e + 001 7.521e − 001 3.224e − 002
4 23 113 1.213e + 004 1.453e + 001 8.279e − 001 4.719e − 002
5 24 137 3.172e + 003 1.245e + 001 8.571e − 001 5.901e − 002
6 24 161 8.973e + 002 9.594e + 000 7.704e − 001 6.187e − 002
7 25 186 2.357e + 002 4.481e + 000 4.671e − 001 4.869e − 002
8 26 212 1.801e + 001 5.031e − 001 1.123e − 001 2.505e − 002
9 33 245 8.544e − 002 4.162e − 003 8.272e − 003 1.645e − 002
10 41 286 8.230e − 004 1.263e − 005 3.036e − 003 7.457e − 001
11 42 328 3.209e − 008 5.735e − 010 4.539e − 005 3.667e + 000

Table 6.6

Low-rank ADI method: Inexact K-N method with superlinear convergence ηk = 1/(k3 + 1).

outer inner cumul ‖ F(Xk) ‖ ‖ Xk − X∞ ‖ ‖Xk−X∞‖
‖Xk−1−X∞‖

‖Xk−X∞‖
‖Xk−1−X∞‖2

1 13 13 7.639e + 005 3.495e + 001 1.056e + 003 3.484e + 004
2 4 17 1.908e + 005 1.853e + 001 5.302e − 001 1.518e − 002
3 3 20 4.760e + 004 6.054e + 000 3.267e − 001 1.763e − 002
4 6 26 1.208e + 004 1.374e + 001 2.270e + 000 3.750e − 001
5 8 34 3.185e + 003 1.254e + 001 9.122e − 001 6.638e − 002
6 7 41 8.998e + 002 9.653e + 000 7.700e − 001 6.143e − 002
7 7 48 2.363e + 002 4.494e + 000 4.655e − 001 4.823e − 002
8 6 54 1.788e + 001 4.977e − 001 1.107e − 001 2.464e − 002
9 9 63 8.554e − 002 3.983e − 003 8.002e − 003 1.608e − 002
10 21 84 8.871e − 004 1.245e − 005 3.126e − 003 8.029e − 001
11 31 115 5.657e − 007 2.088e − 009 1.677e − 004 1.368e + 001
12 47 162 1.449e − 010 9.694e − 013 4.643e − 004 2.740e + 005

Table 6.7

Comparison of computing time.

Lyapunov Convergence rate
solver Exact K-N Linear Superlinear

‖ F(X∞) ‖ Time ‖ F(X∞) ‖ Time ‖ F(X∞) ‖ Time
Smith 3.281e − 008 289 6.115e − 008 68 3.477e − 010 76
ADI 3.273e − 008 204 1.588e − 008 65 1.905e − 010 81

Low-rank ADI 3.209e − 008 145 1.447e − 008 81 1.449e − 010 68

rather late onset of the superlinear convergence behavior, which results in a rather
good performance of the linearly convergent version compared to the superlinearly
convergent version. The time needed to compute the shift parameter is not included
in Table 6.7. This is an additional advantage of the inexact versions because they
need fewer inner iterations and, therefore, a smaller number of shift parameters.

7. Robustness. Let us note that there is another implementation of Newton’s
method for the Riccati equation presented in the literature, e.g., [1], [19]. Here the
Newton step is computed by a Lyapunov equation for the increment Xk+1 − Xk in
the following way:

(7.1)
(Xk+1 −Xk)

(
A−BBTXk

)
+
(
A−BBTXk

)T (Xk+1 −Xk)

= (Xk −Xk−1)BBT (Xk −Xk−1),
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in contrast to (2.4)

(7.2) Xk+1

(
A−BBTXk

)
+
(
A−BBTXk

)T
Xk+1 = −XkBB

TXk − CTC.
Note that the inhomogeneous terms in the Lyapunov equations for both variants of
Newton’s method differ quite substantially. The authors of [1] pointed out that (7.1)
exhibits some advantages compared to the standard implementation (2.4), e.g., if
BBT has low rank.

Equation (7.1) is the matrix notation of

(7.3) F ′(Xk)(Xk+1 −Xk) = −F(Xk)

with the following modification due to (4.2):

−F(Xk) = −F(Xk−1)−F ′(Xk−1)(Xk −Xk−1)

−1
2
F ′′(Xk−1)(Xk −Xk−1, Xk −Xk−1)

= −1
2
F ′′(Xk−1)(Xk −Xk−1, Xk −Xk−1).

(7.4)

Both methods are identical for the exact Newton step:
Lemma 7.1. If a sequence Xk satisfies (7.2), then it also fulfills (7.1). If, con-

versely, a sequence Xk satisfies (7.1), then it also fulfills (7.2), provided the starting
points X0, X1 satisfy (7.2) for k = 0.

Proof. The first conclusion was shown above. For the reverse to hold, we use
(7.4) and obtain

F ′(Xk)(Xk+1 −Xk) = − 1
2F ′′(Xk−1)(Xk −Xk−1, Xk −Xk−1)

= −F(Xk) + F(Xk−1) + F ′(Xk−1)(Xk −Xk−1)

and, hence,

F(Xk) + F ′(Xk)(Xk+1 −Xk) = F(Xk−1) + F ′(Xk−1)(Xk −Xk−1)

for all k ≥ 0. Since it is assumed that for the starting iterates

(7.5) F(X0) + F ′(X0)(X1 −X0) = 0,

the Xk also satisfy (2.4).
Although both methods are identical in the exact case, an inexact version of the

Kleinman–Newton method based on implementation (7.1) is unstable. A reformula-
tion of an inexact Kleinman–Newton method using (7.1) leads to

F ′(Xk)(Xk+1 −Xk) = −1
2
F ′′(Xk−1)(Xk −Xk−1, Xk −Xk−1) + R̃k

= F(Xk−1) + F ′(Xk−1)(Xk −Xk−1)−F(Xk) + R̃k

or, equivalently,

F ′(Xk)(Xk+1 −Xk) + F(Xk) = F ′(Xk−1)(Xk −Xk−1) + F(Xk−1) + R̃k.

Using this recursively shows that the residuals accumulate during the course of the
iteration

F ′(Xk)(Xk+1 −Xk) + F(Xk) =
k∑
i=1

R̃i.
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This means that one has to limit Rk =
∑k

i=1 R̃i (if X1 is computed by an exact
Newton step) according to the convergence Theorem 2.4 which seems to be a rather
strong assumption because the residuals are cumulative.

8. Conclusion. In this paper we propose a modification of the classical Klein-
man–Newton method for the numerical solution of Riccati equations. The iterative
Lyapunov equation solvers for the Newton steps are terminated early to save com-
puting time. Based on the theory of inexact Newton methods, we give termination
criteria which warrant the fast local rates. In addition, we derive conditions, which
guarantee the more global convergence statement for the Kleinman–Newton method.
We show how these requirements can be addressed, for example, for Smith’s method
or the ADI method. The numerical example for a parabolic control problem illustrates
the potential for substantial savings in the number of iterations and computing time.
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HADAMARD FUNCTIONS OF INVERSE M-MATRICES∗
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Abstract. We prove that the class of generalized ultrametric matrices (GUM) is the largest
class of bipotential matrices stable under Hadamard increasing functions. We also show that any
power α ≥ 1, in the sense of Hadamard functions, of an inverse M -matrix is also inverse M -matrix.
This was conjectured for α = 2 by Neumann in [Linear Algebra Appl., 285 (1998), pp. 277–290],
and solved for integer α ≥ 1 by Chen in [Linear Algebra Appl., 381 (2004), pp. 53–60]. We study
the class of filtered matrices, which include naturally the GUM matrices, and present some sufficient
conditions for a filtered matrix to be a bipotential.
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1. Introduction and basic notations. In this article we study stability prop-
erties under Hadamard functions for the class of inverse M -matrices and the class of
filtered matrices, which includes GUM (generalized ultrametric matrices).

A nonnegative matrix U is said to be a potential if it is nonsingular and its inverse
satisfies

∀i �= j, U−1
ij ≤ 0, ∀i, U−1

ii > 0,

∀i,
∑
j

U−1
ij ≥ 0,

that is, if U−1 is an M -matrix which is row diagonally dominant. We denote this class
of matrices by P . In addition we say that U is a bipotential if U−1 is also column
diagonally dominant. This class of matrices is denoted by biP . We note that P , biP
are contained inM−1, the class of inverses of M -matrices.

The class of potential matrices play an important role in probability theory. They
represent the potential (from which we have taken the name) of a transient continuous
time Markov chain (Xt)t≥0, with generator −U−1. That is,

Uij =
∫ ∞

0

(e−U
−1t)ij dt =

∫ ∞

0

Pi{Xt = j}dt

is the mean expected time expended at site j when the chain starts at site i. Clearly
U is a bipotential if both U and U ′ are potentials.

To get a discrete time interpretation take K0 = maxi{U−1
ii }. For any K ≥ K0

the matrix PK = I− 1
KU

−1 is nonnegative, substochastic, and verifies

U−1 = k(I− PK).
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If we can take K = 1, then U−1 = I− P (with P = P1) and U is the mean expected
number of visits of a Markov chain (Yn)n∈N whose transition probability is given by
P . Indeed,

Uij =
∑
n≥0

Pnij =
∑
n≥0

Pi{Yn = j}.

We notice that if U is a potential, then for all i, j we have Uii ≥ Uji. The
probabilistic proof of this fact is based on the so-called strong Markov property which
allows us to conclude

Uji = fjiUii,

where fji ≤ 1 is the probability that the Markov process (Xt), starting from j, ever
reaches the state i. If U is a bipotential, then Uii ≥ max{Uij , Uji}.

For any nonnegative matrix U we define the quantity

τ(U) = inf{t ≥ 0 : I + tU /∈ biP},
which is invariant under permutations; that is, τ(U) = τ(ΠUΠ′). We point out that if
U is a positive matrix, then τ(U) > 0. We shall study some properties of this function
τ . In particular we are interested on matrices for which τ(U) = ∞, generalizing the
class biP as the next result shows.

Proposition 1.1. Assume that U is a nonnegative matrix, which is nonsingular
and τ(U) =∞; then U ∈ biP.

Proof. It is direct from the observation that

t(I + tU)−1 →
t→∞U−1.

Remark 1.1. Later on, we shall prove that the converse is also true: if U is in
class biP , then τ(U) =∞.

The following notion will play an important role in this article.
Definition 1.2. Given a matrix B, a vector μ is said to be a right equilibrium

potential if

Bμ = 1,

where 1 is the constant vector of ones. Similarly it is defined the notion of a left
equilibrium potential, which is the right equilibrium potential for B′. When B is
nonsingular the unique right and left equilibrium potentials are, respectively, denoted
by μB and νB.

We denote by μ̄ = 1′μ the total mass of μ. In the nonsingular case, it is not
difficult to see that ν̄ = μ̄.

Notice that for a matrix U ∈ biP the right and left equilibrium potentials are
nonnegative. This is exactly the fact that the inverse of a bipotential matrix is row
and column diagonally dominant.

Definition 1.3. The constant block form (CBF) matrices are defined recursively
in the following way: given two CBF matrices A,B of sizes p and n− p, respectively,
and numbers α, β, we produce the new CBF matrix by

(1.1) U =
(

A α1p1′
n−p

β1n−p1′
p B

)
,
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where the vector 1p is the vector of ones, of size p. We also say that U is in increasing
CBF if min{A,B} ≥ min{α, β}.

The Definitions 1.4 and 1.6 below were introduced in [12] and [15], generalizing
Definition 1.5 of ultrametric matrices introduced in [11] (see also [14]).

Definition 1.4. A nonnegative CBF matrix U is in nested block form (NBF) if
in (1.1) A and B are NBF matrices and

• 0 ≤ α ≤ β;
• min{Aij , Aji} ≥ α and min{Bkl, Blk} ≥ α;
• max{Aij , Aji} ≥ β and max{Bkl, Blk} ≥ β.

Definition 1.5. A nonnegative symmetric matrix U is said to be an ultrametric
matrix if

(1) for all i, j, Uii ≥ Uij,
(2) for all i, j, k, the inequality Uij ≥ min{Uik, Ukj} is satisfied.

The matrix U is strictly ultrametric if in (1) the inequality is strict.
Remark 1.2. The name ultrametric comes from ultrametric distances. One may

think as Uij = 1
δij

(for i �= j), where δ is an ultrametric distance.
A possible generalization of this concept to the nonsymmetric case is the following.
Definition 1.6. A nonnegative matrix U of size n is said to be a GUM if, for

all i, j, Uii ≥ max{Uij , Uji} and, when n > 2, every three distinct elements i, j, k have
a preferred element. Assume that this element is i which means

• Uij = Uik;
• Uji = Uki;
• min{Ujk, Ukj} ≥ min{Uji, Uij};
• max{Ujk, Ukj} ≥ max{Uji, Uij}.

By definition the transpose of a GUM is also a GUM. We note that an ultrametric
matrix is a symmetric GUM. The study of the incidence graph for the inverse of an
ultrametric matrix was done in [6] and for a GUM in [7] (this is the one step graph
induced by a Markov chain associated with the matrix).

In the next result we summarize the main results obtained in [12] and [15] con-
cerning GUM.

Theorem 1.7. Let U be a nonnegative matrix.
• U is a GUM if and only if it is a permutation similar to a NBF.
• If U is a GUM, then it is nonsingular if and only if it does not contain a row

of zeros and no two rows are the same.
• If U is a nonsingular GUM, then U ∈ biP.

It is clear that if U is a GUM, then I + tU is a nonsingular GUM. In particular,
τ(U) =∞.

We introduce a main object of this article.
Definition 1.8. Given a function f and a matrix U , the matrix f(U) is defined

as f(U)ij = f(Uij). We shall say that f(U) is a Hadamard function of U .
Given two matrices A,B of the same size, we denote by A 	 B the Hadamard

product of them, where (A	B)ij = AijBij.
Given a vector a, we denote by Da the diagonal matrix whose diagonal is a. We

have DaDb = Da 	Db = Da	b.
The class of CBF matrices (and its permutations) is closed under Hadamard

functions. Similarly, the class of increasing CBF (and its permutations) is closed
under increasing Hadamard functions.

On the other hand, the class of NBF, and therefore also the class of GUM, is
stable under Hadamard nonnegative increasing functions. We summarize this result
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in the following proposition.
Proposition 1.9. Assume that U is a GUM and f : R+ → R+ is an increasing

function. Then f(U) is a GUM. In particular, τ(f(U)) =∞, and if f(U) is nonsin-
gular, then f(U) ∈ biP. A sufficient condition for f(U) to be nonsingular is that U
is nonsingular and f is strictly increasing.

Proof. It is clear that f(U) is a GUM, and therefore τ(f(U)) = ∞. Then,
from Proposition 1.1 we have that f(U) ∈ biP as long as f(U) is nonsingular. If U
is nonsingular, then it does not contain a row (or column) of zeros, and there are
not two equal rows (or columns). This condition is stable under strictly increasing
nonnegative functions, so the result follows.

One of our main results is a sort of reciprocal of the previous one. We shall prove
that if τ(f(U)) = ∞ for all increasing nonnegative functions f , then U must be a
GUM (see Theorem 2.4).

Let us introduce the following index.
Definition 1.10. We say that a nonnegative matrix U is in class T if

τ(U) = inf{t > 0 : (I + tU)−11 � 0 or 1′(I + tU)−1
� 0},

and I + τ(U)U is nonsingular whenever τ(U) <∞.
We shall prove that every nonnegative matrix U that is a permutation of an

increasing CBF is in class T .
We remark here that our purpose is to study Hadamard functions of matrices and

not spectral functions of matrices, which are quite different concepts. For spectral
functions of matrices there are deep and beautiful results for the same classes of
matrices we consider here. See, for example, the work of Bouleau [3] for filtered
operators. For M matrices, see the works of Varga [17], Micchelli and Willoughby
[13], Ando [1], Fiedler and Schneider [9], and the recent work of Bapat, Catral, and
Neummann [2] for M -matrices and inverse M -matrices.

2. Main results.
Theorem 2.1. Assume U ∈ P and that f : R+ → R+ is a nonnegative strictly

increasing convex function. Then f(U) is nonsingular and det(f(U)) > 0. Also f(U)
has a right nonnegative equilibrium potential. Moreover, if f(0) = 0, we have that
M = U−1f(U) is an M -matrix. If U ∈ biP, then f(U) also has a left nonnegative
equilibrium potential.

Note that H = f(U)−1 is not necessarily a Z-matrix; that is, for some i �= j it
can happen that Hij > 0, as the following example will show. Therefore the existence
of a nonnegative right equilibrium potential, which is

∀i, Hii +
∑
j 
=i

Hij ≥ 0,

does not necessarily imply that the inverse is row diagonally dominant, that is,

∀i, Hii ≥
∑
j 
=i
|Hij |.

Example 2.1. Consider the matrix

P =

⎛
⎝0 1

2 0
1
2 0 1

2
0 1

2 0

⎞
⎠ .
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Then U = (I − P )−1 ∈ biP . Consider the nonnegative strictly convex function
f(x) = x2 − cos(x) + 1. A numerical computation gives

(f(U))−1 ≈
⎛
⎝ 0.3590 −0.0975 0.0027
−0.0975 0.2372 −0.0975

0.0027 −0.0975 0.3590

⎞
⎠ ,

which is not a Z-matrix.
We denote by U (α) the Hadamard transformation of U under f(x) = xα. In

particular, U (2) = U 	 U . It was conjectured by Neumann in [16] that U (2) is an
inverse M -matrix if U is so. This was solved by Chen in the beautiful article [4] for
any positive integer power of U . Our next result is a generalization of Chen’s result.
His proof depends on the following interesting result: U is an inverse M -matrix if and
only if its adjoint is a Z-matrix, and each proper principal submatrix is an inverse
M -matrix. Our technique is entirely different and is based strongly on the idea of an
equilibrium potential.

This result has the following probabilistic interpretation. If U is the potential
of a transient continuous time Markov process, then U (α) is also the potential of a
transient continuous time Markov process. In Theorem 2.3 we show that the same is
true for a potential of a Markov chain. An interesting open question is what is the
relation between the Markov chain associated with U and that associated with U (α).

Theorem 2.2. Assume U ∈ M−1 and α ≥ 1. Then U (α) ∈ M−1. If U−1 ∈ P,
then (U (α))−1 ∈ P. If U ∈ biP, then U (α) ∈ biP.

Theorem 2.3. Assume that U−1 = I− P , where P is a sub-Markov kernel, that
is, P ≥ 0, P1 ≤ 1. Then for all α ≥ 1 there is a sub-Markov kernel Q(α) such that
(U (α))−1 = I−Q(α). Moreover, if P ′1 ≤ 1, then Q(α)′1 ≤ 1.

The next result establishes that the class of GUM is the largest class of potentials
stable under increasing Hadamard functions.

Theorem 2.4. Let U be a nonnegative matrix such that τ(f(U)) = ∞ for all
increasing nonnegative functions f . Then, U must be a GUM.

Example 2.2. Given a, b, c, d ∈ R+, consider the nonsingular matrix

U =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
a b 1 0
c d 0 1

⎞
⎟⎟⎠ .

For all increasing nonnegative functions f and all t > 0, (I+tf(U))−1 is an M -matrix,
while U is not a GUM. Moreover, U is not a permutation of an increasing CBF. This
shows that the last theorem does not hold if, in the definition of τ , we replace the
class biP by the classM−1.

Theorem 2.5. Let U ∈ biP and f : R+ → R+ be a strictly increasing convex
function. f(U) is in biP if and only if f(U) belongs to the class T .

Theorem 2.6. If U is a nonnegative increasing CBF matrix, then U is in the
class T .

As a corollary of the two previous theorems we obtain the following important
result.

Theorem 2.7. Assume that U ∈ biP is an increasing CBF matrix and that
f : R+ → R+ is a nonnegative strictly increasing convex function. Then f(U) ∈ biP.
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3. Proofs of Theorems 2.1, 2.2, 2.3, and 2.5. Let us start with a useful
lemma.

Lemma 3.1. Assume U ∈M−1. Then for all t ≥ 0, (I + tU) ∈M−1. Moreover,
if U ∈ P, then (I + tU) ∈ P and its right equilibrium potential is strictly positive.
In particular if U ∈ biP, then so is I + tU , and its equilibrium potentials are strictly
positive. Similarly, let 0 ≤ s < t and assume I + tU ∈ biP; then I + sU ∈ biP, and
its equilibrium potentials are strictly positive.

Proof. For some K > 0 large enough, U−1 = K(I − N), where N ≥ 0 (and
N1 ≤ 1 for the row diagonally dominant case). In what follows we can assume that
K = 1. (It is enough to consider the matrix KU instead of U .)

From the equality (I−N)(I +N +N2 + · · ·+Np) = I−Np+1 we get that

I +N +N2 + · · ·+Np = U(I−Np+1) ≤ U.
We deduce that the series

∑∞
l=1N

l is convergent and its limit is U .
Consider now the matrix

Nt = t

((
I− 1

1 + t
N

)−1

− I

)
= t

∞∑
l=1

(
1

1 + t

)l
N l.

We have Nt ≥ 0. In the case N1 ≤ 1, since N is a nonnegative matrix we deduce
that N l1 ≤ 1. This allows us to prove

Nt1 = t

∞∑
l=1

(
1

1 + t

)l
N l1 ≤ t

∞∑
l=1

(
1

1 + t

)l
1 = 1.

Therefore the matrix I − Nt is a Z-matrix (which is row diagonally dominant when
U−1 is). On the other hand, we have

I + tU = I + t(I−N)−1 = (tI + I−N)(I−N)−1 = (1 + t)
(

I− 1
1 + t

N

)
(I−N)−1,

and we deduce that I + tU is nonsingular and its inverse is

(I + tU)−1 =
1

1 + t
(I−N)

(
I− 1

1 + t
N

)−1

=
1

1 + t

((
I− 1

1 + t
N

)−1

−N
(

I− 1
1 + t

N

)−1
)

=
1

1 + t

( ∞∑
l=0

(1 + t)−lN l −
∞∑
l=0

(1 + t)−lN l+1

)

=
1

1 + t
(I−Nt).

This shows that the inverse of I−Nt is nonnegative, and therefore this matrix is an
M -matrix. We conclude I + tU ∈ M−1.

The only thing left to prove is that Nt1 < 1 in the row diagonally dominant case,
that is, when N1 ≤ 1. Notice that from the convergence of the series

∑
l≥0N

l we
deduce that N l → 0 as l→∞. Then for large l, say l > l0, we have N l1 ≤ 1

21. Thus

Nt1 = t

∞∑
l=1

(
1

1 + t

)l
N l1 ≤ t

(
l0∑
l=1

(
1

1 + t

)l
+

1
2

∞∑
l=l0+1

(
1

1 + t

)l)
1 < 1.
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For a generalK > 0 we have the equality (I+tU)−1 = K
t+K (I− t

K

∑∞
l=1(

K
t+K )lN l),

where N = I− 1
KU

−1.
Finally, assume that I + tU ∈ biP . Hence I + β(I + tU) ∈ biP for all β ≥ 0. This

implies that

I +
β

1 + β
tU ∈ biP .

Now it is enough to take β ≥ 0 such that s = β
1+β t.

This lemma has two immediate consequences.
Corollary 3.2. If U ∈ biP, then τ(U) =∞.
Corollary 3.3. Let U be a nonnegative matrix; then

τ(U) = sup{t ≥ 0 : I + tU ∈ biP}.
Proof. It is clear that τ(U) ≤ sup{t ≥ 0 : I + tU ∈ biP}. On the other hand, if

I + tU ∈ biP , we get I + sU ∈ biP for all 0 ≤ s ≤ t. This fact and the definition of
τ(U) imply the result.

Proof of Theorem 2.1. We first assume that f(0) = 0. We have that U−1 = K(I−
P ) for some K > 0 and P a substochastic matrix. Without loss of generality we can
assume K = 1, because it is enough to consider KU instead of U and f̃(x) = f(x/K)
instead of f .

Consider M = (U−1f(U)). For i �= j let us compute

Mij = (U−1f(U))ij = (1 − pii)f(Uij)−
∑
k 
=i

pikf(Ukj).

Since 1− pii −
∑

k 
=i pik ≥ 0 (which is equivalent to
∑

k pik ≤ 1) and f is convex, we
obtain (

1−
∑
k

pik

)
f(0) +

∑
k

pikf(Ukj) ≥ f
(∑

k

pikUkj

)
= f(Uij).

The last equality follows from the fact that U−1 = I − P . This shows that Mij ≤ 0.
Consider now a positive vector x such that y′ = x′U−1 > 0 (for its existence, see [10,
Theorem 2.5.3]). Then

x′M = x′U−1f(U) = y′f(U) > 0,

which implies, by the same cited theorem in [10], that M is an M -matrix. In partic-
ular, M is nonsingular and det(M) > 0. So f(U) is nonsingular and det(f(U)) > 0.
Now consider ρ the right equilibrium potential of f(U). We have

Mρ = U−1f(U)ρ = U−11 = μU ≥ 0,

then ρ = M−1μU ≥ 0, because M−1 is a nonnegative matrix. This means that f(U)
possesses a nonnegative right equilibrium potential. Since f(U) is nonsingular, we
also have a left equilibrium potential, but we do not know whether it is nonnegative.
Then the first part is proven under the extra hypothesis that f(0) = 0.

Assume now a = f(0) > 0, and consider g(x) = f(x) − a, which is a strictly
increasing convex function. Obviously f(U) = g(U) + a11′, so

μf(U) =
1

1 + aμ̄g(U)
μg(U) ≥ 0, νf(U) =

1
1 + aμ̄g(U)

νg(U),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

296 C. DELLACHERIE, S. MARTINEZ, AND J. SAN MARTIN

where μ̄g(U)) = 1′μg(U)) > 0. We have used the fact that μ̄g(U)) = ν̄g(U)). Thus f(U)
has a nonnegative right equilibrium potential and a left equilibrium potential. We
need to prove that f(U) is nonsingular and det(f(U)) > 0. This follows immediately
from the equality

f(U) = g(U)(I + aμg(U)1′),

which implies

f(U)−1 = g(U)−1 − a

1 + aμ̄g(U)
μg(U)(νg(U));

det(f(U)) = det(g(U))(1 + aμ̄g(U)).

Then the first part of the result is proven.
In the bipotential case use U ′ instead of U to obtain the existence of a nonnegative

left equilibrium potential for f(U).
Proof of Theorem 2.5. Using the same ideas as above, we can assume that f(0) =

0. Also we have that U−1(I + tf(U)) = Mt is an M -matrix for all t ≥ 0. Therefore
I+tf(U) is nonsingular for all t, and we denote by μt and νt the equilibrium potentials
for I + tf(U).

Assume first that f(U) is in class T (see Definition 1.10), which means that

τ(f(U)) = min{t > 0 : μt � 0 or νt � 0}.

We prove that for all t ≥ 0, μt, νt are nonnegative. Since

Mtμt = U−11 = μU ,

we obtain that μt = M−1
t μU ≥ 0, because M−1

t is a nonnegative matrix. Thus,
τ(f(U)) =∞, and since f(U) is nonsingular we get from Proposition 1.1 that f(U) ∈
biP . Conversely if f(U) ∈ biP , then τ(f(U)) =∞, and the result follows.

For the rest of the section n denotes the size of U .
Lemma 3.4. Assume that U ∈ P. Then any principal square submatrix A of U

is also in class P. The same is true if we replace P by biP.
Proof. By induction and a suitable permutation the restriction of U to {1, . . . , n−

1} × {1, . . . , n− 1} is enough to prove the result for A. Assume that

U =
(
A b
c′ d

)
and U−1 =

(
Λ −ζ
−	′ θ

)
.

Since A−1 = Λ− 1
θ ζ	

′ we get that the off-diagonal elements of A−1 are nonpositive.
It is quite easy to see that the result will follow as soon as A−11 ≥ 0.

Since U ∈ P we have that Λ1− ζ ≥ 0 and θ ≥ 	′1. Therefore,

A−11 = Λ1− 1
θ
ζ	′1 = Λ1− 	′1

θ
ζ ≥ Λ1− ζ ≥ 0.

Recall that for a vector a, Da is the associated diagonal matrix.
Lemma 3.5. Assume U ∈ biP and α ≥ 1. If

U =
(
A b
c′ d

)
,
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then there exists a nonnegative vector η such that

A(α)η = b(α).

Proof. We first perturb the matrix U to have a positive matrix. Consider ε > 0
and the positive matrix Uε = U + ε11′. It is direct to prove that

U−1
ε = U−1 − ε

1 + εμ̄U
μU (νU )′,

where μ̄U = 1′μU is the total mass of μU . Then Uε ∈ biP , and its equilibrium
potentials are given by

μUε =
1

1 + εμ̄U
μU , νUε =

1
1 + εν̄U

νU .

We decompose the inverse of Uε as

U−1
ε =

(
Λε ζε
	′ε θε

)
,

and we notice that Aεζε + θεbε = 0, which implies that

bε = Aελε,

with λε = − 1
θε
ζε ≥ 0. Also we mention here that λε is a subprobability vector, that

is, 1′λε ≤ 1. This follows from the fact that U−1
ε is column diagonally dominant.

Take now the matrix Vε = D−1
bε
Aε. It is direct to check that Vε ∈ M−1 and that

its equilibrium potentials are

μVε = λε, νVε = DbενAε .

Thus Vε ∈ biP , and we can apply Theorem 2.1 to get that the matrix V (α)
ε possesses

a right equilibrium potential ηε ≥ 0; that is, for all i,
∑
j

(V (α)
ε )ij(ηε)j = 1,

which is equivalent to

∑
j

(Aε)αij
(bε)αi

(ηε)j = 1.

Hence

A(α)
ε ηε = b(α)

ε .

Recall that the matrix A(α) is nonsingular. Since obviously A(α)
ε → A(α) as ε → 0,

we get

ηε → η = (A(α))−1b(α),

and the result follows.
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Proof of Theorem 2.2. Consider first the case where U ∈ biP . We already know
that U (α) is nonsingular and that it has left and right nonnegative equilibrium poten-
tials. Therefore, in order to prove U (α) ∈ biP , it is enough to prove that (U (α))−1 is
a Z-matrix; that is, we need to show ((U (α))−1)ij ≤ 0 for i �= j. An argument based
on permutations shows that it is enough to prove the claim for i = 1, j = n.

Decompose U (α) and its inverse as follows:

U (α) =
(
A(α) b(α)

(c(α))′ dα

)
and (U (α))−1 =

(
Ω −β
−α′ δ

)
.

We will show β ≥ 0. We notice that δ = det(A(α))
det(U(α))

> 0 and −A(α)β + δb(α) = 0, and
we deduce

b(α) = A(α)

(
β

δ

)
.

Therefore, β
δ = η ≥ 0, where η is the vector given in Lemma 3.5. Thus β ≥ 0, and

the result is proven for the case U ∈ biP .
Now, consider U = M−1 the inverse of the M -matrix M . Using Theorem 2.5.3

in [10], we get the existence of two positive diagonal matrices D,E such that DME
is a strictly row and column diagonally dominant M -matrix. Thus V = E−1UD−1

is in biP , from which it follows that V (α) ∈ biP . Hence, U (α) = E(α)V (α)D(α) is the
inverse of an M -matrix. The rest of the result is proven in a similar way.

Proof of Theorem 2.3. By hypothesis we have U = I − P , where P ≥ 0 and
P1 ≤ 1. We notice that U is diagonally dominant on each column, which means that
for all i, j

Uii ≥ Uji.

Also we notice that U = I + PU and therefore Uii ≥ 1.
According to Theorem 2.2 we know that H = (U (α))−1 is a row diagonally dom-

inant M -matrix. The only thing left to prove is that the diagonal elements of H are
dominated by one: Hii ≤ 1 for all i. We will prove it for i = n.

Consider the following decompositions:

U =
(
A b
c′ d

)
, U−1 =

(
Λ −ω
−η′ γ

)
, (U (α))−1 =

(
Ω −β
−α′ δ

)
,

U−1U (α) =
(

Ξ −ζ
−χ′ ρ

)
.

A direct computation gives that

γ = ρδ + χ′β ≥ ρδ.

We need to show that δ ≤ 1. By hypothesis, γ ≤ 1; then it is enough to prove that
ρ ≥ 1. On the one hand, we have

ρ = (1− pnn)Uαnn −
∑
j 
=n

pnjU
α
jn = Uαnn −

∑
j

pnjU
α
jn = Uαnn −

∑
j

pnjUjnU
α−1
jn .
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On the other hand, we also have Uα−1
jn ≤ Uα−1

nn and
∑
j pnjUjn = Unn − 1. Hence we

deduce

ρ ≥ Uα−1
nn ≥ 1.

This finishes the first part of the theorem . The rest of the result is proven by using
U ′ instead of U .

4. Proof of Theorem 2.4. Notice that U is a GUM if and only if n ≤ 2 or
every principal submatrix of size 3 is a GUM.

Since by hypothesis the matrix I + tU is a bipotential, it is diagonally dominant,

1 + tUii ≥ tUij ,

and by taking t → ∞, we find Uii ≥ Uij . This proves the result when n ≤ 2. So, in
what follows we assume n ≥ 3.

ConsiderA any principal submatrix of U , of size 3×3. Since I+tf(A) is a principal
submatrix of I + tf(U), we deduce that I + tf(A) ∈ biP (as long as I + tf(U) ∈ biP).
If the result holds for the 3× 3 matrices, we deduce that A is a GUM, implying that
U is also a GUM.

Thus, in the rest of the proof we can assume that U is a 3×3 matrix that verifies
the hypothesis of the theorem. After a suitable permutation we can further assume
that

U =

⎛
⎝ a b1 b2
c1 d α
c2 β e

⎞
⎠ ,

where α = min{Uij : i �= j} = min{U} and β = min{Uji : Uij = α, i �= j}.
Since U is diagonally dominant we have min{a, d, e} ≥ α. Take f increasing such

that f(α) = 0 and f(x) > 0 for x > α. Then,

I + f(U) =

⎛
⎝1 + f(a) f(b1) f(b2)

f(c1) 1 + f(d) 0
f(c2) f(β) 1 + f(e)

⎞
⎠

is a biP-matrix whose inverse we denote by
⎛
⎝ δ −ρ1 −ρ2

−θ1 γ1 −γ2

−θ2 −γ3 γ4

⎞
⎠ .

In particular we obtain

(
1 + f(d) 0
f(β) 1 + f(e)

)−1

=
(

γ1 −γ2

−γ3 γ4

)
− 1
δ

(
θ1
θ2

)(
ρ1

ρ2

)′
,

and we deduce that

(4.1) 0 = γ2 = θ1ρ2.
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• Case ρ2 = 0. We get f(b2) = 0, which implies further

b2 = α and c2 ≥ β.(4.2)

The last conclusion follows from the definition of β. Therefore,

(4.3) U =

⎛
⎝ a b1 α
c1 d α
c2 β e

⎞
⎠ .

We must prove that U is GUM.
Consider another increasing function g such that g(β) = 0 and g(x) > 0 for
x > β. Then,

I + g(U) =

⎛
⎝1 + g(a) g(b1) 0

g(c1) 1 + g(d) 0
g(c2) 0 1 + g(e)

⎞
⎠ .

Its inverse is of the form ⎛
⎝ δ̃ −ρ̃1 0
−θ̃1 γ̃1 0
−θ̃2 −γ̃3 γ̃4

⎞
⎠ .

As before, we deduce that 0 = γ̃3 = θ̃2ρ̃1.
– Subcase θ̃2 = 0. We have g(c2) = 0, which implies c2 = β. In this

situation we have

U =

⎛
⎝ a b1 α
c1 d α
β β e

⎞
⎠ .

By permuting rows and columns 1, 2, if necessary, we can assume that
b1 ≤ c1. Consider the situation where c1 < β; of course, implicitly we
should have α < β. Under a suitable increasing transformation h, we
get

I + h(U) =

⎛
⎝1 + h(a) 0 0

0 1 + h(d) 0
h(β) h(β) 1 + h(e)

⎞
⎠

and its inverse⎛
⎜⎝

1
1+h(a) 0 0

0 1
1+h(d) 0

− h(β)
(1+h(a))(1+h(e)) − h(β)

(1+h(d))(1+h(e))
1

1+h(e)

⎞
⎟⎠ .

The sum of the third row is then
1

1 + h(e)

(
1− h(β)

(
1

1 + h(a)
+

1
1 + h(d)

))
,

and this quantity can be made negative by choosing an appropriate
function h. The idea is to make h(β)→∞ and

h(β)
max{h(a), h(d)} → 1.

Therefore, c1 ≥ β and U is a GUM.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HADAMARD FUNCTIONS OF INVERSE M -MATRICES 301

– Subcase ρ̃1 = 0. We have g(b1) = 0 and then b1 ≤ β. Take again an
increasing function � such that

I + �(U) =

⎛
⎝1 + �(a) 0 0

�(c1) 1 + �(d) 0
�(c2) 0 1 + �(e)

⎞
⎠

and its inverse ⎛
⎜⎝

1
1+�(a) 0 0

− �(c1)
(1+�(a))(1+�(d))

1
1+�(d) 0

− �(c2)
(1+�(a))(1+�(e)) 0 1

1+�(e)

⎞
⎟⎠ .

The sum of the first column is

1
1 + �(a)

(
1− �(c1)

(1 + �(d))
− �(c2)

(1 + �(e))

)
,

which can be made negative by repeating a similar argument as before
if both c1 > β and c2 > β.
Therefore if we assume that c1 > β, we necessarily have c2 ≤ β. On
the other hand, from (4.2) we know c2 ≥ β, proving that c2 = β. The
conclusion is α ≤ b1 ≤ β < c1 and

U =

⎛
⎝ a b1 α
c1 d α
β β e

⎞
⎠ ,

which is a GUM.
Therefore we can continue under the hypothesis c1 ≤ β ≤ c2.
∗ Subsubcase b1 < β. Again we must have α < β. Under this condition

we have that c2 > α. Using an increasing function ω, we get

I + ω(U) =

⎛
⎝1 + ω(a) 0 0

ω(c1) 1 + ω(d) 0
ω(c2) ω(β) 1 + ω(e)

⎞
⎠ ,

and its inverse is⎛
⎜⎜⎜⎜⎜⎝

1
1+ω(a) 0 0

− ω(c1)
(1+ω(a))(1+ω(d))

1
1+ω(d) 0

− ω(c2)(1+ω(d))−ω(β)ω(c1)
(1+ω(a))(1+ω(d))(1+ω(e)) − ω(β)

(1+ω(d))(1+ω(e))
1

1+ω(e)

⎞
⎟⎟⎟⎟⎟⎠ .

The sum of the third row is
(4.4)

1
(1 + ω(e))

(
1− ω(c2)

1 + ω(a)
+

ω(β)ω(c1)
(1 + ω(a))(1 + ω(d))

− ω(β)
1 + ω(d)

)
.

If c1 < β, we can assume ω(c1) = 0. With this choice we can make
the sum in (4.4) negative by a suitable selection of ω as we did
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before. Thus we must have c1 = β, in which case the sum under
study is proportional to

(4.5) 1− ω(c2)
1 + ω(a)

+
ω(β)2

(1 + ω(a))(1 + ω(d))
− ω(β)

1 + ω(d)
.

If c2 = β, then

U =

⎛
⎝a b1 α
β d α
β β e

⎞
⎠

is a GUM. So, we must analyze the case where c2 > β in (4.5).
We will arrive at a contradiction by taking an asymptotic as before.
Consider a fixed number λ ∈ (0, 1). Choose a family of functions
(ωr)r∈N such that, as r →∞,

ωr(β)→∞, ωr(β)
ωr(c2)

→ λ,
ωr(c2)
ωr(a)

→ 1,
ωr(d)
ωr(a)

→ φ,

where φ = 1 if d > β, and φ = λ if d = β. The asymptotic of (4.5)
is then

1− 1 +
λ2

φ
− λ

φ
.

This quantity is strictly negative for the two possible values of φ,
which is a contradiction, and therefore c2 = β.

To finish with the Subcase ρ̃1 = 0, which will in turn finish with Case ρ2 = 0,
we consider a further subcase.

∗ Subsubcase b1 = β. We recall that we are under the restrictions
c1 ≤ β ≤ c2 and

U =

⎛
⎝ a β α
c1 d α
c2 β e

⎞
⎠ .

Notice that if c2 = β, then U is GUM. So, we may assume in this
part that c2 > β. If c1 = α, we can permute 1 and 2 to get

ΠUΠ′ =

⎛
⎝d α α
β a α
β c2 e

⎞
⎠ ,

which is also in NBF, and U is a GUM. Thus we can assume c1 > α,
and again we have α < β.
Take an increasing function m such that

I +m(U) =

⎛
⎝1 +m(a) m(β) 0

m(c1) 1 +m(d) 0
m(c2) m(β) 1 +m(e)

⎞
⎠ .

We take the asymptotic under the following restrictions:

m(β)
m(a)

→ λ ∈ (0, 1),
m(c1)
m(a)

→ λ,
m(e)
m(a)

→ 1,
m(c2)
m(a)

→ 1,
m(d)
m(a)

→ φ,
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where φ = 1 if d > β, and φ = λ if d = β. The limiting matrix for
1

m(a) (I +m(U)) is

V =

⎛
⎝1 λ 0
λ φ 0
1 λ 1

⎞
⎠ ,

whose determinant is Δ = φ − λ2 > 0. Therefore it is nonsingular,
and as the limit of matrices in biP , V itself must belong to biP . On
the other hand, the inverse of V is given by

V −1 =
1
Δ

⎛
⎝ φ −λ 0

−λ 1 0
−(φ− λ2) 0 φ− λ2

⎞
⎠ ,

and the sum of the first column is

λ2 − λ
Δ

< 0,

which is a contradiction.
This finishes with the subcase ρ2 = 0, and we return to (4.1) to consider now
the following case.
• Case θ1 = 0. Under this condition we get c1 = α and

U =

⎛
⎝ a b1 b2
α d α
c2 β e

⎞
⎠ .

Consider the transpose of U and permute on it 2 and 3, to obtain the matrix

Ũ =

⎛
⎝ a c2 α
b2 e α
b1 β d

⎞
⎠ ,

where now b1 ≥ β. Clearly the matrix Ũ verifies the hypothesis of the theorem
and has the shape of (4.3); that is, we are in the “case ρ2 = 0,” which, we
already know, implies that Ũ is a GUM. Then U itself is a GUM, and the
theorem is proven.

5. Filtered matrices and sufficient conditions for classes biP and T .
The class of filtered matrices, which turn out to be a generalization of GUM, gives
a good framework to study a potential theory of matrices. They were introduced
as operators in [8] to generalize the class of self-adjoint operators whose spectral
decomposition is written in terms of conditional expectations (see, for instance, [3],
[5], and [11]).

The basic tool to construct these matrices is partitions of Jn = {1, . . . , n}. The
components of a partition R are called atoms, and we denote by R

∼ the equivalence
relation induced by R. Then i, j are in the same atom of R if and only if i R∼ j.

A partition R is coarser than or equal to a partition Q if the atoms of Q are
contained in the atoms of R. This (partial) order relation is denoted by R � Q. It is
also said that Q is finer than R. For example, in J4 we have R = {{1, 2}, {3, 4}} �
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Q = {{1}, {2}, {3, 4}}. The coarsest partition is the trivial one N = {Jn}, and the
finest one is the discrete partition F = {{1}, {2}, . . . , {n}}.

Definition 5.1. A filtration F = {R0 ≺ R1 ≺ · · · ≺ Rk} is a strictly increasing
sequence of comparable partitions. F is said to be dyadic if each nontrivial atom of
Rs is divided into two atoms of Rs+1.

A filtration in the wide sense is an increasing sequence of comparable partitions
G = {R0 � R1 � · · · � Rk}.

The difference between a filtration and a filtration in the wide sense is that in the
latter case repetition of partitions is allowed.

Each partition R induces an incidence matrix F =: F (R) given by

Fij =

{
1 if i R∼ j,

0 otherwise .

A vector v ∈ Rn is said to be R-measurable if v is constant on the atoms of R, that
is,

i
R
∼ j ⇒ vi = vj .

This can be expressed in terms of standard matrix operations as

F (R)v = DwRv,

where wR = F (R)1 is the vector constant on each atom, and this constant is the
size of the respective atom (recall that Dz is the diagonal matrix associated with the
vector z). The set of R-measurable vectors is a linear subspace of Rn. Notice that
if the partition is F , then the associated incidence matrix is the identity and the
subspace of measurable vectors is just Rn. On the other hand, if the partition is the
trivial one N , then the incidence matrix is 11′ and the measurable vectors in this
case are the constant ones.

Definition 5.2. A matrix U is said to be filtered if there exists a filtration in
the wide sense G = {Q0 � Q1 � · · · � Ql}, vectors a0, . . . , al, b0, . . . , bl with the
restriction that as, bs are Qs+1-measurable (we take Ql+1 = F the discrete partition),
and

(5.1) U =
�∑

s=0

DasF (Qs)Dbs .

There is no loss of generality if we assume that Q0 = N and Q� = F , that is,
F (Q0) = 11′ and F (Q�) = I. Let us see that (5.1) can be simply written in terms of
a filtration. Indeed, notice that if as and bs are Qs-measurable, then

DasF (Qs)Dbs = DasDbsF (Qs) = Das	bsF (Qs),
where the vector as 	 bs is the Hadamard product of as and bs, which is also Qs-
measurable. Hence a sum of terms of the form

DasF (Qs)Dbs +Das+1F (Qs+1)Dbs+1 + · · ·+Das+rF (Qs+r)Dbs+r ,

with R = Qs = · · · = Qs+r, can be reduced to the sum of two terms as

DCF (R) +Das+rF (R)Dbs+r ,
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where C =
∑r−1
h=0 as+h 	 bs+h is R-measurable. In this way the representation (5.1)

can be written as

(5.2) U =
k∑
s=0

DCsF (Rs) +DmsF (Rs)Dns ,

where F = {R0 ≺ R1 ≺ · · · ≺ Rk} is a filtration, N = R0, F = Rk, Cs is Rs-
measurable, ms, ns are Rs+1-measurable, and mk = 0 (again we assume that Rk+1 =
F). We shall always consider this reduced representation of (5.1), and we shall say
that U is filtered with respect to the filtration F.

If all ms, ns are Rs-measurable, then (5.1) reduces to the form

(5.3) U =
k∑
s=0

DCs+ms	nsF (Rs),

and U is a symmetric matrix.
We are mainly interested in a decomposition like (5.2) with the vectors ms, ns

having the following special structure:

(5.4) ms = Γs 	 ps, ns = qs,

where Γs is Rs-measurable and {ps, qs} is an Rs+1-measurable partition; that is,
{ps, qs} are Rs+1-measurable {0, 1}-valued vectors with disjoint support ps 	 qs = 0
and ps + qs = 1. If this is the case, U is said to be a special filtered matrix (SFM),

(5.5) U =
k∑
s=0

DCs F (Rs) +DΓsDps F (Rs) Dqs .

Notice that Γk = 0.
It is not difficult to see that every CBF matrix is filtered. This is done by induc-

tion. Assume that

U =
(

A α1p1′
n−p

β1n−p1′
p B

)
.

Define R0 = N and R1 = {{1, . . . , p}, {p+ 1, . . . , n}}. Take

C0 = α1n, Γ0 = (β − α)1n, p0 = (0p,1n−p)′, q0 = (1p,0n−p)′;

then we obtain

DC0F (R0) +DΓ0Dp0F (R0)Dq0 =
(
α1p1′

p α1p1′
n−p

β1n−p1′
p α1n−p1′

n−p

)
.

The key step is that A − α,B − α are also in CBF. We have that C0,Γ0 are R0-
measurable and p0, q0 is anR1-measurable partition. We also notice that if 0 ≤ α ≤ β,
then C0 ≥ 0,Γ0 ≥ 0.

The induction also shows that U can be decomposed as in (5.5), where F =
{R0 ≺ · · · ≺ Rk} is a dyadic filtration; Cs,Γs are Rs-measurable; and {ps, qs} is a
Rs+1-measurable partition.

We now summarize the representation form for the class of CBF, NBF, and GUM
matrices.
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Proposition 5.3. V is a permutation of a CBF matrix if and only if there exists
a dyadic filtration F = {R0 ≺ · · · ≺ Rk}; a sequence of vectors C0, . . . , Ck, Γ0, . . . ,Γk
verifying Cs,Γs are Rs-measurable, and a sequence {ps, qs} of Rs+1-measurable par-
titions such that

V =
k∑
s=0

DCsF (Rs) +DΓsDpsF (Rs)Dqs .

That is V is an SFM.
Also V is a permutation of an increasing CBF matrix if and only if there is a

decomposition where Γ0, Cs,Γs, s = 1, . . . , k, are nonnegative. Furthermore, V is a
nonnegative matrix if and only if C0 is nonnegative.

Moreover, V is a GUM if and only if Cs,Γs, s = 0, . . . , k, are nonnegative and
for s = 0, . . . , k − 1 it holds that

(5.6) Γs ≤ Cs+1 + Γs+1.

Finally, V is an ultrametric matrix if and only if there is a decomposition with Γs = 0
for all s.

Remark 5.1. We can assume without loss of generality that each ps, qs is obtained
as follows. The nontrivial atoms A1, . . . ,Ar of Rs are divided into the new atoms

A1,1,A1,2, . . . ,Ar,1,Ar,2
of Rs+1. Consider B1, . . . ,Br the set of trivial atoms in Rs (that is, the atoms which
are singletons). Let qs be the indicator of A1,1 ∪ · · · ∪ Ar,1, ps be the indicator of
A1,2∪· · ·∪Ar,2∪B1∪· · ·∪Br, and Γs = 0 on the Rs-measurable set B = B1∪· · ·∪Br.
We point out that the partitionRs+1 is obtained fromRs refined by ps. The following
consistency relation,

(5.7) DpsF (Rs)ps = DpsF (Rs+1)1,

will be used further in order to give sufficient treatable conditions for an SFM to be
a bipotential.

Example 5.1. Consider the CBF matrix

U =

⎛
⎜⎜⎝
a α2 α1 α1

β2 b α1 α1

β1 β1 c α̂2

β1 β1 β̂2 d

⎞
⎟⎟⎠ .

U is an NBF matrix if the constraints α1 ≤ β1, α1 ≤ min{α2, α̂2}, β1 ≤ min{β2, β̂2},
α2 ≤ β2, α̂2 ≤ β̂2 are verified and finally the diagonal elements dominate on each row
and column, that is, β2 ≤ min{a, b}, β̂2 ≤ min{c, d}.

U is filtered with respect to the dyadic filtration R0 = {1, 2, 3, 4} ≺ R1 =
{{1, 2}, {3, 4}} ≺ R2 = {{1}, {2}, {3}, {4}} and can be written as
(5.8)
U = DC0F (R0) +DΓ0Dp0F (R0)Dq0 +DC1F (R1) +DΓ1Dp1F (R1)Dq1 +DC2F (R2),

where

C0 =

⎛
⎜⎜⎝
α1

α1

α1

α1

⎞
⎟⎟⎠ , Γ0 =

⎛
⎜⎜⎝
β1 − α1

β1 − α1

β1 − α1

β1 − α1

⎞
⎟⎟⎠ , p0 =

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠ , q0 =

⎛
⎜⎜⎝

1
1
0
0

⎞
⎟⎟⎠ ,
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C1 =

⎛
⎜⎜⎝
α2 − α1

α2 − α1

α̂2 − α1

α̂2 − α1

⎞
⎟⎟⎠ , Γ1 =

⎛
⎜⎜⎝
β2 − α2

β2 − α2

β̂2 − α̂2

β̂2 − α̂2

⎞
⎟⎟⎠ , p1 =

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ , q1 =

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ ,

and

C2 =

⎛
⎜⎜⎝
a− α2

b− α2

c− α̂2

d− α̂2

⎞
⎟⎟⎠ .

The decomposition in (5.8) is then

U =

⎛
⎜⎜⎝
α1 α1 α1 α1

α1 α1 α1 α1

α1 α1 α1 α1

α1 α1 α1 α1

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

β1 − α1 β1 − α1 0 0
β1 − α1 β1 − α1 0 0

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝
α2 − α1 α2 − α1 0 0
α2 − α1 α2 − α1 0 0

0 0 α̂2 − α1 α̂2 − α1

0 0 α̂2 − α1 α̂2 − α1

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0 0 0 0
β2 − α2 0 0 0

0 0 0 0
0 0 β̂2 − α̂2 0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝
a− α2 0 0 0

0 b− α2 0 0
0 0 c− α̂2 0
0 0 d− α̂2 0

⎞
⎟⎟⎠ .

The constraints are translated into the positivity of the vectors C and Γ and the
ones induced by (5.6). We point out that we can also choose, for example, Γ1 =
(0, β2 − α2, 0, β̂2 − α̂2)′, but in this case Γ1 is not R1-measurable. As we will see in
subsection (5.1), this measurability condition will play an important role.

Example 5.2. Consider the nonnegative CBF matrix

U =

⎛
⎝2 2 2

2 2 1
2 1 2

⎞
⎠ .

This matrix is an SFM and can be decomposed as in (5.5). Nevertheless, none of these
decompositions can have all its terms nonnegative. In particular, no permutation of
U is an increasing CBF matrix.

Remark 5.2. Notice that the class of CBF matrices is stable under Hadamard
functions. Nevertheless there are examples of filtered matrices for which f(U) is not
filtered. Consider the matrix

U = DαF1 +DaF1Db +DβF2,

where F1 = F (N ) = 11′ and F2 = I. The vector α is constant, and we confound it
with the constant α ∈ R. The vectors a, b, β are all F -measurable. Then U is filtered
and, moreover,

(5.9) U = α+ ab′ +Dβ .
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Take α = β = 0, a = (2, 3, 5, 7)′, and b = (11, 13, 17, 19)′. Then all the entries
of U are different. As f runs over all possible functions, f(U) runs over all 4 × 4
matrices. This implies that some of them can not be written as in (5.9), because
in this representation we have at most 13 free variables. Still is possible that each
f(U) is decomposable as in (5.1), using maybe a different filtration. A more detailed
analysis shows that this is not the case. For example, if we choose the filtration
N ≺ {{1, 2}, {3, 4}} ≺ F , then every matrix V filtered with respect to this filtration
verifies that V13 = V23 = V14 = V24.

Matrices of the type F (R) are related to conditional expectations (in probability
theory). Indeed, let R = {A1,A2, . . . ,Ar} and n� = #(A�) be the size of each atom.
It is direct that w = wR = F (R)1 is an R-measurable vector that verifies wi = n�
for i ∈ A�. Then

ER = D−1
w F (R) = F (R) D−1

w

is the matrix of conditional expectation with respect to the σ-algebra generated by
R. This matrix E = ER satisfies

EE = E, E′ = E, E1 = 1;
∀v, Ev is R-measurable;
if v is R-measurable, then Ev = v.

Therefore, E is the orthogonal projection over the subspace of all R-measurable vec-
tors. In the case of the trivial partition N , one gets EN = 1

n11′ as the mean operator.
Remark 5.3. The L2 space associated with {1, . . . , n} endowed with the counting

measure is identified with Rn with the standard Euclidean scalar product. In this way
each vector of R

n can be seen as a function in L2, and E is an orthogonal projection.
The product DvE (as matrices) is the product of the operators Dv and E, where Dv

is the multiplication by the function v. Notice that EDv and E(v) are quite different.
The former is an operator (a matrix), and the latter is a function (vector). They are
related by E(v) = EDv(1), where 1 is the constant function.

Let R, Q be two partitions; then R � Q is equivalent to EREQ = EQER = ER.
This commutation relation can be written as a commutation relation for F (R) and
F (Q). In fact,

F (R)F (Q) = ERDwREQDwQ = EREQDwRDwQ
= ERDwRDwQ = F (R)DwQ ,

F (Q)F (R) = (F (R)F (Q))′ = DwQF (R).

5.1. An algorithm for filtered matrices: Conditions to be in biP. In
this section we introduce a backward algorithm that gives a sufficient condition for a
filtered matrix to be in class biP . For that purpose assume that U has a representation
as in (5.1):

U =
�∑

s=0

DasF (Qs)Dbs ,

where we assume further that as, bs are all nonnegative. In particular, U is a nonneg-
ative matrix.
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We introduce the conditional expectations Es = EQs = D−1
F (Qs)1 F (Qs) and the

normalized factors as = as 	 F (Qs)1, bs = bs. Then U can be written as

(5.10) U =
�∑

s=0

DasEsDbs =
�∑

s=0

asEsbs,

where we have identified vectors (functions) and the operator of multiplication they
induce. We shall use this notation throughout this section. Finally, we recall that
E� = I.

We can now use the algorithm developed in [8] to study the inverse of I + U . In
what follows, we take the convention 0 · ∞ = 0/0 = 0. This algorithm is defined by
the backward recursion starting with the values λ� = μ� = κ� = 1, σ� = (1 + a�b�)−1

and for s = �− 1, . . . , 0,

λs = λs+1[1 − σs+1as+1Es+1(κs+1bs+1)],
μs = μs+1[1− σs+1bs+1Es+1(κs+1as+1)],
κs = Es+1(λs) = Es+1(μs),
σs = (1 + Es(κsasbs))−1.(5.11)

We get the recursion

(5.12) κs−1 = Es(κs)− Es(κsas)Es(κsbs)
1 + Es(κsasbs)

.

The algorithm continues until some λ or μ is negative; otherwise we arrive at s = 0.
If this is the case, then I+U is nonsingular and its inverse is of the form I−N , where

N =
�∑

s=0

σsλsasEsbsμs.

We also have that

λ−1 = (I−N)1 and μ−1 = (I−N)′1,

where λ−1, μ−1 are obtained from the first two formulae in (5.11) for s = −1. There-
fore, if they are also nonnegative, the matrix I + U is a biP-matrix.

In this way we have that a sufficient condition for I+U to be a biP-matrix is that
the algorithm works for s = �, . . . , 0 and that all the λ, μ are nonnegative, including
λ−1, μ−1. In this situation we have that λ (and μ) is a decreasing nonnegative sequence
of vectors. Sufficient treatable conditions on the coefficients of the expansion (5.10)
involve the recurrence (5.12). Starting from κ� = 1, we assume that this recurrence
has a solution such that κs ∈ [0, 1] for all s = �, . . . ,−1. We shall study closely this
recursion for the class of SFM, and we shall obtain sufficient conditions to have I +U
in biP .

Before studying this problem, we further discuss the algorithm. We have the
following relations:

(
I +

�∑
k=s

akEkbk

)−1

= I−
�∑

k=s

σkλkakEkbkμk = I−Ns,

λs−1 = (I−Ns)1, μs−1 = (I−Ns)′1.
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That is, our condition is to impose that all the matrices

I + a�E�b�, . . . , I +
�∑

k=s

akEkbk, . . . , I +
�∑

k=0

akEkbk = I + U

are in class biP .
We now assume that U is an SFM with a decomposition like

U =
k∑
s=0

DCs F (Rs) +DΓsDps F (Rs) Dqs ,

where F = R0 ≺ · · · ≺ Rk is a filtration; Cs,Γs are nonnegative Rs-measurable; and
{ps, qs} is a Rs+1-measurable partition. Again we set Es = D−1

F (Rs)1 F (Rs) and the
normalized Rs-measurable factors

cs = Cs 	 F (Rs)1, γs = Γs 	 F (Rs)1.
Since diagonal matrices commute, we get that U has a representation of the form

U =
k∑
s=0

csEs + γspsEsqs,

with γk = 0. In the previous algorithm we can make two steps at each time and
consider κs in place of κ2s, λs instead of λ2s+1, ls instead of λ2s. We also introduce
ds = 1/κs to simplify certain formulae (this vector can take the value ∞). We get,
starting from κk = lk = 1, σk = (1 + ck)−1, that for s = k − 1, . . . , 0

λs = σs+1ls+1,
ls = λs[1− γspsEs(qs/(cs+1 + ds+1))],
κs = Es(ls),
σs = 1/(1 + κscs) = ds/(cs + ds).

Similar recursions hold for μ,m, which are the analogues of λ, l. Relation (5.12) takes
the form

(5.13)
1
ds

= Es

(
1

cs+1 + ds+1

)
− γs Es

(
ps

cs+1 + ds+1

)
Es

(
qs

cs+1 + ds+1

)
.

The inverse of I + U is I−N , where

(5.14) N =
k∑
s=0

csσslsEsms +
k−1∑
s=0

γsλspsEsqsμs =
k∑
s=0

csσslsEsms + γsλspsEsqsμs.

Again λ−1 = (I−N)1 = σ0l0, and similarly μ−1 = σ0m0.
Let us introduce the following function:

ρs = Es(ps)ps + Es(qs)qs.

Theorem 5.4. Assume that the backward recursion (5.13) has a nonnegative
solution starting with dk = 1. Assume, moreover, that this solution verifies for s =
k − 1, . . . , 0

(5.15) ρsγs ≤ cs+1 + ds+1.
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Then λs, ls, μs,ms, σs, for s = k, . . . , 0, as well as λ−1, μ−1 are well defined and
nonnegative. Therefore, I + U ∈ biP, and its inverse is I − N , where N is given by
(5.14).

The proof of this result is based on the following lemma.
Lemma 5.5. Let x, y be nonnegative vectors, and E be a conditional expectation.

If xE(y) ≤ 1, then E(xy) ≤ 1.
Proof. We first assume that y is strictly positive. Since x ≤ 1/E(y) and E is an

increasing operator, we have

E(xy) ≤ E

(
1

E(y)
y

)
=

E(y)
E(y)

= 1.

For the general case consider (y + ε1)/(1 + ε|x|∞) instead of y and pass to the limit
ε→ 0.

Proof of Theorem 5.4. We notice that condition (5.15) implies that

qsγs
cs+1 + ds+1

Es(qs) ≤ 1.

Since γs is Es-measurable and qs = q2s , we obtain

γsEs

(
qs

cs+1 + ds+1

)
= Es

(
γsq

2
s

cs+1 + ds+1

)
.

This last quantity is bounded by one by Lemma 5.5. Similarly we have

γsEs

(
ps

cs+1 + ds+1

)
≤ 1,

which implies that the algorithm is not stopped, and all the coefficients are nonnega-
tive including λ−1, μ−1.

Corollary 5.6. Assume that for s = k − 1, . . . , 0 we have

(5.16) ρsγs ≤ cs+1 + γs+1.

Then the recursion (5.13) has a nonnegative solution that verifies (5.15). In particular,
I + tU is in class biP for all t ≥ 0, and U is in biP if it is nonsingular.

Proof. Let us consider first the case t = 1. We prove by induction that γs ≤ ds.
For s = k we have 0 = γk ≤ dk = 1. We point out that if we multiply in (5.13) by γs,
we get

γs
ds

= Es

(
γs

cs+1 + ds+1

)
− Es

(
γsps

cs+1 + ds+1

)
Es

(
γsqs

cs+1 + ds+1

)
,

which is of the form x+ y−xy, where x = Es

(
γsps

cs+1+ds+1

)
. The inequality (5.16), the

induction hypothesis γs+1 ≤ ds+1, and Lemma 5.5 imply 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. In
particular,

0 ≤ γs
ds
≤ 1,

and the induction is completed. Theorem 5.4 shows that I + U is in class biP . We
notice that tU also verifies condition (5.16) because this condition is homogeneous,
and the result follows.
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Remark 5.4. We notice that condition (5.16) can be expressed in terms of the
original coefficients C,Γ in the dyadic case. In fact (see (5.7)),

psEs(ps) = DpsD
−1
F (Rs)1 F (Rs)ps = DpsD

−1
F (Rs)1F (Rs+1)1,

which implies that

ρs = (1/F (Rs)1)	 (F (Rs+1)1).

Then, inequality (5.16) is

Γs ≤ Cs+1 + Γs+1,

which is the condition for having a GUM (see (5.6)) . We mention here that condition
(5.16) is more general than having a GUM, as the following example shows.

Remark 5.5. Consider the matrix Uβ,

Uβ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
β β 1 0
β β 0 1

⎞
⎟⎟⎠ = DΓ0Dp0F (R0)Dq0 + I,

where R0 = N , Γ0 = β(1, 1, 1, 1)′ ≤ C1 = (1, 1, 1, 1)′. We compute c0 = 0, γ0 =
4β, c1 = C1, γ1 = 0 and also ρ0 = 1/2.

It is direct to check that U−1
β = U−β. Then for all β ≥ 0 the matrix Uβ ∈ M−1.

Also Uβ ∈ biP if and only if 0 ≤ β ≤ 1/2. When β ≥ 0 the condition (5.6), Γ0 ≤
C1+Γ1, is equivalent to β ≤ 1. Then, this condition does not ensure that U ∈ biP (this
happens because the filtration is not dyadic). Nevertheless, the analogous condition
in terms of the normalized factors (5.16),

ρ0γ0 ≤ c1 + γ1,

is equivalent to β ≤ 1/2, which is the correct condition.
Corollary 5.7. Assume that

(5.17) ρsγs ≤
k∑

r=s+1

cr

hold for s = k − 1, . . . , 0. Then the recursion (5.13) has a nonnegative solution that
verifies (5.15). In particular, I + tU is in class biP for all t ≥ 0, and U is in biP if
it is nonsingular.

Proof. Consider the set of inequalities

ρsγs ∨ ξs ≤ cs+1 + ξs+1,

for s = k − 1, . . . , 0. A nonnegative solution is given by

ξs = sup

{
0, γ0ρ0 −

s∑
r=1

cr, . . . , γkρk −
s∑

r=k+1

cr, . . . , γs−1ρs−1 − cs
}
.

The hypothesis of the corollary is that ξk = 0. We also notice that ξs isRs-measurable.
We show, using a backward recursion, that ξs ≤ ds. Indeed, by construction,

1/ξs = Es(1/ξs) ≥ (cs+1 + ξs+1)−1 while 1/ds ≤ Es((cs+1 + ds+1)−1). Then the
inequality ρsγs ≤ cs+1 + ξs+1 implies ρsγs ≤ cs+1 + ds+1, so the result holds (see
Theorem 5.4).
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5.2. Conditions for class T and proof of Theorem 2.6.
Theorem 5.8. Assume that U has a decomposition

U =
�∑

s=0

as Es bs,

where as, bs are nonnegative Es+1-measurable. Then U belongs to the class T and,
moreover,

τ(U) = inf{t > 0 : (I + tU)−11 ≯ 0 or 1′(I + tU)−1
≯ 0}.

In particular, if τ(U) <∞, then I + τ(U)U ∈ biP.
Remark 5.6. In the case τ(U) <∞ we have that I+t U is nonsingular for t > τ(U)

sufficiently close to τ(U). This follows from the fact that the set of nonsingular
matrices is open.

Theorem 5.8 states that every filtered matrix with a nonnegative decomposition
is in class T , which proves Theorem 2.6.

Proof of Theorem 5.8. A warning about the use of vectors and functions. Here
we consider vectors or functions on {1, . . . , n} indiscriminately. Thus for two vectors
a, b the product ab makes sense as the product of two functions, which corresponds to
the Hadamard product of the vectors. Also an expression as (1 + ab)−1 is the vector
whose components are the reciprocals of the components of 1 + ab. We also recall
that (a)i is the ith component of a.

Now, for p = 0, . . . , � consider the matrices

U(p) =
�∑

s=p

as Es bs.

We notice that U(0) = U . We shall prove that τp = τ(U(p)) is increasing in p and
τ� =∞.

We rewrite the algorithm for I + tU . This takes the form λ�(t) = μ�(t) = κ�(t) =
1, σ�(t) = (1 + t a�b�)−1, and for p = �− 1, . . . , 0

λp(t) = λp+1(t)[1− σp+1(t) t ap+1Ep+1(κp+1(t)bp+1)],

μp(t) = μp+1(t)[1 − σp+1(t) t bp+1Ep+1(κp+1(t)ap+1)],(5.18)

κp(t) = Ep+1(λp(t)) = Ep+1(μp(t)),

σp(t) = (1 + Ep(κp(t)tapbp))−1.

Also λ−1(t), μ−1(t) are defined similarly. If λs(t), μs(t), σs(t), s = �, . . . , p, are well
defined, then

(I + tU(p))−1 = I−N(p, t),

where

(5.19) N(p, t) =
�∑

s=p

σs(t)λs(t) t asEsbsμs(t).
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If λs(t), μs(t), σs(t), s = �, . . . , p, are nonnegative, then N(p, t) ≥ 0 and (I+tU(p)) ∈
M−1. Moreover, λp−1(t) and μp−1(t) are the right and left equilibrium potentials of
(I + tU(p)),

(I + tU(p))λp−1(t) = 1 and μ′
p−1(t)(I + tU(p)) = 1′.

So, if they are nonnegative, we have I + tU(p) ∈ biP . In particular, for p = � we get

(I + ta� E� b�)−1 = (I + tU(�))−1 = I− t(1 + t a�b�)−1a� E� b�.

Since E� = I we obtain that λ�−1 = μ�−1 = (1+t a�b�)−1. This means that I+tU(�) ∈
biP for all t ≥ 0. Therefore τ� = ∞, and the result is true for U(�). In particular,
τ�−1 ≤ τ�. We shall prove by induction that

• τp+1 ≤ · · · ≤ τ�
and for q = p+ 1, . . . , �

• τq = inf{t > 0 : λq−1(t) � 0 or μq−1(t) � 0} = inf{t > 0 : λq−1(t) ≯

0 or μq−1(t) ≯ 0};
• λs(t), μs(t), for s = �, . . . , q − 1, are strictly positive for t ∈ [0, τq);
• if τq <∞, we have I + τqU(q) ∈ biP .

The case τp+1 =∞ is simple. Indeed, fix t ≥ 0. From Lemma 3.1, I+ tU(p+1) ∈
biP and its equilibrium potential are strictly positive; that is, λp(t) > 0, μp(t) > 0.
Thus, I + tU(p) is nonsingular; its inverse is I−N(p, t), where N(p, t) ≥ 0 is given by
(5.19). Hence, I + tU(p) ∈M−1. We conclude that

τp = inf{t > 0 : I + tU(p) /∈ biP} = inf{t > 0 : λp−1(t) � 0 or μp−1(t) � 0}.
If τp =∞, Lemma 3.1 gives

λp−1(t) > 0, μp−1(t) > 0,

and the induction step holds in this case.
Now if τp <∞, by continuity we have I + τpU(p) ∈ biP . We shall prove later on

that λp−1(t), μp−1(t) are strictly positive in [0, τp).
We now analyze the case τp+1 < ∞. We first notice that in the algorithm the

only possible problem could arise with the definition of σp(t). Since σp(τp+1) > 0, the
algorithm is well defined, by continuity, for steps �, . . . , p on an interval [0, τp+1 + ε]
for ε > 0 small enough. This proves that the matrix I + tU(p) is nonsingular in that
interval, and that λp−1, μp−1 exist in the same interval.

Now, for a sequence tn ↓ τp+1, either λp(tn) or μp(tn) has a negative component.
Since there are a finite number of components, we can assume without loss of gener-
ality that for a fixed component i we have (λp(tn))i < 0. Then, by continuity we get
that (λp(τp+1))i = 0, which implies (by the algorithm) that (λp−1(τp+1))i = 0.

Assume now that for some t > τp+1 the matrix I + tU(p) ∈ biP . By Lemma
3.1 we will have that I + τp+1U(p) ∈ biP , but its equilibrium potential will satisfy
λp−1(τp+1) > 0, which is a contradiction. Therefore we conclude that τp ≤ τp+1.

The conclusion of this discussion is that the matrix I + tU(p), for t ∈ [0, τp+1], is
nonsingular and its inverse is I−N(p, t), with N(p, t) ≥ 0. That is, I + tU(p) ∈M−1

and therefore

τp = inf{t > 0 : I + tU(p) /∈ biP} = inf{t > 0 : λp−1(t) � 0 or μp−1(t) � 0},
and by continuity I + τpU(p) ∈ biP .
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To finish the proof we need to show that τp coincides with

S = inf{t > 0 : λp−1(t) ≯ 0 or μp−1(t) ≯ 0}.

It is clear that S ≤ τp. If S < τp, then, due to Lemma 3.1, we have that both
λp−1(S) > 0 and μp−1(S) > 0, which is a contradiction, and then S = τp. This
shows that λp−1(t), μp−1(t) are strictly positive for t ∈ [0, τp), and the induction is
proven.

Remark 5.7. It is possible to prove that κp(τp) > 0 when τp <∞, but this is not
central to our discussion.
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Abstract. A new algorithm is presented for simultaneous reduction of a given finite sequence of
square matrices to upper triangular matrices by means of orthogonal transformations. The reduction
is performed through a series of deflation steps, where each step contains a simultaneous eigenvalue
problem being a direct generalization of the generalized eigenvalue problem. To solve the latter, a
fast variant of the Gauss–Newton algorithm is proposed with some results on its local convergence
properties (quadratic for the exact and linear for the approximate reduction) and numerical examples
are provided.
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1. Introduction. Numerical algorithms for simultaneous reduction of several
matrices to a specific structured form (like triangular or diagonal) by means of one
and the same transformation applied to all given matrices is one of the most chal-
lenging problems in matrix analysis [1, 14, 9, 8]. The transformations of interest can
be similarity, congruence, or equivalence with possible additional constraints. The
problem we are going to tackle is the following problem of approximate simultaneous
reduction to triangular matrices.

Problem. Given n× n real matrices A1, . . . , Ar, find orthogonal n× n matrices
Q and Z such that matrices

Bk = QAkZ

are as upper triangular as possible.
This problem arises, for example, during the computation of the canonical de-

composition in tensor algebra; see [9] and references therein. This problem is a key
ingredient in many applications like signal processing [5, 12]. The simultaneous re-
duction of several matrices to upper triangular form is to some extent related to
computing the product Schur form of a set of matrices, considered in [6].

In the case of two matrices (r = 2) such a transformation is well-studied, can be
constructed explicitly, and often is referred to as the generalized Schur decomposition.
It justifies the name of simultaneous generalized Schur decomposition (SGSD) used
for those decompositions in the case of r > 2 [9]. It is clear that arbitrary matrices
Ak may not admit such a reduction with good accuracy, so we impose on Ak the
following existence assumption: Real matrices Ak are such that orthogonal matrices
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Q and Z exist complying with the equations

QAkZ = Tk + Ek,

where Tk are upper triangular and the residue matrices Ek satisfy(
r∑

k=1

||Ek||2
)1/2

= ε,

where ε is considered to be “small.” When ε = 0, we will say that matrices A1, . . . , Ar

possess an exact SGSD, otherwise an approximate SGSD or ε-SGSD.
Numerical algorithms for simultaneous reduction of matrices are often obtained

as generalizations of the corresponding algorithms for one matrix or a pair of matri-
ces. We should mention three basic approaches for solving problems of simultaneous
reduction of matrices. The first is a very general approach of Chu [3]; an efficient nu-
merical implementation requires the integration of a possibly very stiff ODE, and that
is a very hard problem. The second approach is a Jacobi-type algorithm, where each
step consists of two (or one) Jacobi rotations Qi and Zi that are sought to minimize
the merit function of the form

r∑
k=1

||Qi(QAkZ)Zi||2LF ,

where || ||LF is the sum of squares of all elements in the strictly lower triangular
part of the matrix and Q and Z are orthogonal matrices that are already obtained
at the previous steps. This algorithm was proposed in [9]; it was shown that at
each step it requires finding the roots of a polynomial of order 8. This algorithm
is a generalization of the well-known algorithm of Cardoso and Souloumiac [2] for
simultaneous diagonalization of a sequence of matrices using Jacobi rotations.

The third family of methods (besides Jacobi and continuous approaches) are al-
ternating least squares methods. The problem of nonorthogonal joint diagonalization
of matrices is very close to our problem (indeed it is the main application of the
SGSD [9]). For nonorthogonal joint diagonalization many methods are available, for
example, a very popular AC-DC (alternating columns–diagonal centers) method of
Yeredor [12]. Also we can mention [13] where a noniterative method for the simulta-
neous diagonalization is presented.

The alternating-type methods are simple to implement, and each iteration is quite
fast; however, they suffer from several drawbacks. One of them is that we can converge
into a local minima of the objective function; another is that the number of iterations
can be large.

In the case of r = 2 (a pair of matrices), a well-developed tool for the computation
of the generalized Schur decomposition is the QZ algorithm [10, 7]. Its generalization
to the case of several matrices was developed in [5] where it was called an extended
QZ algorithm. However, the QZ algorithm is efficient only when the shifts are used.
It is not clear how the technique of shifts can be generalized to the case r > 2.

In this paper we propose a new algorithm to compute the SGSD. We reach the
purpose through a sequence of deflation steps. At each step we solve an optimization
problem in 2n+r variables which is a direct generalization of the generalized eigenvalue
problem (we call it the simultaneous eigenvalue problem). The main ingredient of the
algorithm is our fast version for the Gauss–Newton method applied to the latter
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problem. We suggest an inexpensive update technique for the matrices at successive
iterative steps.

We prove the local quadratic convergence in the case of exact SGSD for the given
A1, . . . , Ar and linear convergence in the case of ε-SGSD, the convergence factor being
proportional to ε. Numerical experiments confirm the effectiveness of our approach.
For example, the computation of the SGSD for 128 matrices of size 128× 1281 in our
examples takes less than a minute. The word “fast” in the title should be understood
in the sense that our method is faster than a straightforward implementation of the
Gauss–Newton approach due to some clever update tricks. We also give the asymp-
totic complexity of our method with respect to n and r. However, we did not perform
any comparisons with other methods. Such results will be reported elsewhere.

2. Simultaneous eigenvalue problem and its solution.

2.1. Transformation of the initial problem. Given real matrices A1, . . . , Ar,
we want to find orthogonal matrices Q and Z making the matrices QA1Z, . . . , QArZ
as upper triangular as possible. In order to do this, first consider a related problem
of finding orthogonal matrices Q and Z such that the matrices QAiZ are reduced to
the following block triangular form:

(2.1) QAkZ ≈
(
λk v�k
0 Bk

)
,

where Bk is an (n − 1) × (n − 1) matrix, λk is a scalar, and vk is a vector of size
n− 1. As soon as (2.1) is found, we accomplish a deflation step reducing the problem
to the same but smaller problem for the matrices Bk. Proceeding in the same way
with Bk we finally reduce Ak to the upper triangular form. The question is, Can
these matrices, in fact, be reduced to triangular form? At present we do not have
any theoretical estimates on the error of the triangularization of Bk by means of
orthogonal transformations. One can expect the following situation to happen: The
matrices Ak are reducible to triangular form with the accuracy ε, Bk are reducible
to triangular form with accuracy c1ε for some c1 > 1, and so on. If ε is large (say,
10−3), it may happen that after n steps of the algorithm no appropriate accuracy is
obtained. A separate theoretical study of this issue is needed, and the results will be
reported elsewhere. However, at least in our numerical experiments we do not observe
such growth; i.e., if the initial set of matrices Ak can be reduced to the triangular
form with accuracy ε, the approximation obtained by successive deflation (i.e., n steps
are made) has accuracy cε with some small constant c, see the numerical examples
section for details. Thus, our main goal is to find Q and Z that satisfy (2.1).

The approximate equations (2.1) are equivalent to

QAkZe1 ≈ λke1,

where e1 is the first unit vector. Since Q is orthogonal, we can multiply these equations
from the left by Q� without changing the residue:

AkZe1 ≈ λkQ
�e1.

Now, introducing two vectors x = Ze1 and y = Q�e1, we end up with the following
overdetermined system of equations to be solved in the least squares sense:

(2.2) Akx = λky.

1r ≈ n is often the case in tensor applications of SGSD.
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(It is easy to see that unknowns x, λ, and y are defined up to the multiplication by a
constant; thus, a normalizing condition is needed, i.e., ||x|| = 1.)

If r = 2, then this is a well-known generalized eigenvalue problem for a pair
of matrices A1, A2. Note that since we work in real arithmetics, then our existence
assumption of the reduction matrices Q and Z means that the matrix pencil A1−λA2

has no complex eigenvalues. However, it is worth pointing out that the method in
this paper can be straightforwardly extended to the complex case if all computations
are performed in complex arithmetic. The algorithm can also be modified to the case
when matrices Ak are real and complex conjugate pairs may appear, but it is not
trivial.

So we may refer to the problem (2.2) as the simultaneous generalized eigenvalue
problem, or simply the simultaneous eigenvalue problem (SEP). Since x, y, and λk

are defined up to the multiplication by a constant, we use the following normalizing
condition:

||x|| = 1.

(The norm is a Euclidean norm of a vector; for matrices we use the Frobenius norm.)
The SEP (2.2) is the key component of our algorithm. How it can be solved will

be described in the next section. If we consider this solver as a “black box,” then the
algorithm for calculation of the SGSD reads as follows.

Algorithm 2.1. Given r real matrices A1, . . . , Ar of size n× n, find orthogonal
matrices Q and Z such that the matrices QAkZ are as upper triangular as possible:

1. Set

m = n, Bi = Ai, i = 1, . . . , r, Q = Z = I.

2. If m = 1, then stop.
3. Solve the SEP

Bkx = λky, k = 1, . . . , r.

4. Find m×m Householder matrices Qm, Zm such that

x = β1Q
�
me1, y = β2Zme1.

5. Calculate Ck as (m− 1)× (m− 1) submatrices of B̂k defined as follows:

B̂k = QmBkZm =
(
αk v�k
εk Ck

)
.

6. Set

Q←
(
I(n−m)×(n−m) 0

0 Qm

)
Q, Z ← Z

(
I(n−m)×(n−m) 0

0 Zm

)
.

7. Set m = m− 1, Bk = Ck, and proceed to step 2.

2.2. Gauss–Newton algorithm for the simultaneous eigenvalue prob-
lem. In this section we present an algorithm for solving the SEP (2.2). To begin
with, let us write (2.2) elementwise as follows:

(2.3)
n∑

j=1

(Ak)ijxj = λkyi, i = 1, . . . , n.
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Now introduce r × n matrices A′
j with the entries

(A′
j)ki = (Ak)ij , k = 1, . . . , r, i = 1, . . . , n, j = 1, . . . , n,

and a column vector λ = [λ1, . . . , λr]�. Then (2.3) becomes

(2.4)
n∑

j=1

xjA
′
j = λy�.

The set of equations (2.4) can be considered as an overdetermined system of
nonlinear equations. To solve it, we derive a variant of the Gauss–Newton method and
propose a fast scheme to implement it. Then we obtain some convergence estimates. It
is worthy to note that in the case of two matrices (r = 2), the Gauss–Newton method
is equivalent to the simple Newton method for the computation of the generalized
eigenvectors of a matrix pencil.

The idea behind the Gauss–Newton method is to linearize the system (as in the
standard Newton method) producing an overdetermined linear system and then solve
it in the least squares sense.

From the linearization of (2.4) at some point (x, λ, y), we obtain the following
overdetermined system:

(2.5)
n∑

j=1

x̂jA
′
j = λy� +�λy� + λ�y�, x̂ = x+�x, ||x̂|| = 1.

At each iterative step, the system (2.5) has to be solved in the least squares sense. To
cope with this problem, let us observe, first of all, that the unknowns �y and �λk

can be easily excluded in the following way. To this end, find an n × n Householder
matrix H such that

Hy = he1

and an r × r Householder matrix C such that

Cλ = ce1.

(In the above equations, e1 denotes the first column in the identity matrices of different
sizes and h and c are scalars.) Premultiplying (2.5) by C and postmultiplying it by
H�, we obtain

(2.6)
n∑

j=1

x̂jÂ
′
j = che1e

�
1 + h�λ̂e�1 + ce1�ŷ�,

where

Â′
j = CA′

jH
�, �ŷ = H�y, �λ̂ = C�λ.

The equivalence of (2.6) and (2.5) follows from the orthogonality of H and C. In
particular, the coefficients x̂j are the same in both problems.
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Now we can split the problem (2.6) into two independent problems. Indeed,∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

x̂jÂ
′
j − che1e�1 + ce1�ŷ� + h�λ̂e�1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

x̂jB
′
j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
r∑

k=2

⎛⎝ n∑
j=1

x̂j(Â′
j)k1 − h�λ̂k

⎞⎠2

+
r∑

i=2

⎛⎝ n∑
j=1

x̂j(Â′
j)1i − c�ŷi

⎞⎠2

+

⎛⎝ n∑
j=1

x̂j(Â′
j)11 − ch− h�λ̂1 − c�ŷ1

⎞⎠2

,

where the matrices B′
j are obtained from Â′

j by replacing the elements in the first row
and column by zeroes. Therefore, if c �= 0 and h �= 0, then we can exclude �λ̂ and
�ŷ (one can verify the equations below by direct algebraic manipulations) as follows:

�λ̂k =
1
h

n∑
j=1

x̂j(Â′
j)k1, �ŷi =

1
c

n∑
j=1

x̂j(Â′
j)1i, i = 2, . . . , n,

and

h�λ̂1 + ch+ c�ŷ1 =
n∑

j=1

x̂j(Â′
j)11.

After eliminating �λ̂ and �ŷ, we have the minimization problem only in terms of x̂:

(2.7)

∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

x̂jB
′
j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

→ min, ||x̂|| = 1.

Once x̂ is found, �ŷ and �λ̂ can be determined from the equations⎛⎝ n∑
j=1

x̂jÂ
′
j

⎞⎠
k1

= h�λ̂k, k = 2, . . . , r,

⎛⎝ n∑
j=1

x̂jÂ
′
j

⎞⎠
1i

= c�ŷi, i = 2, . . . , n.

For the two unknowns �ŷ1 and �λ̂1, we have only one equation, so one of these
unknowns can be chosen arbitrarily.

What happens if c or h is zero? Consider, for example, the case c = 0. That
means that λ = 0, and that, in turn, means that there exists a vector x such that

n∑
j=1

xjA
′
j ≈ 0,

so the matrices A′
j are approximately linearly dependent. To tackle this problem, we

should first find an orthogonal basis in the set of matrices A′
j and only after that solve

our problem.
Equation (2.5) is the first order optimality condition for our minimization prob-

lem. Since (2.6) and (2.7) follow from (2.5) if ||λ|| �= 0 and ||y|| �= 0, then we have the
following.
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Theorem 2.1. If (x∗, λ∗, y∗) with ||x∗|| = 1 minimizes∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

xjA
′
j − λy�

∣∣∣∣∣∣
∣∣∣∣∣∣

and λ∗, y∗ are both nonzero vectors, then x∗ solves (2.7).

2.2.1. Practical way for calculation of x̂. However, the approach described
above requires an explicit computation of the Householder matrices H and C and
evaluation of Âj . It will be shown later that x̂ can be computed without any reference
to the Householder matrices. Therefore, we need a way to find the new λ and y directly
from the known x̂. Having obtained the new x̂, we propose to evaluate y and λ by
the power method as follows:

(2.8) λ̃ = B′y, ỹ = B′�λ,

where

B′ =
n∑

j=1

x̂jA
′
j .

The explanation is simple. If we know λ and y with accuracy δ (that is, ||λ− λ∗|| ≤
δ, ||y − y∗|| ≤ δ, where λ∗, y∗ are the solution vectors), then, as it will be proved in
section 3, the computed approximation x to the vector x∗ satisfies

||x− x∗|| = O(δ2 + δε),

where ε is the smallest attainable residue in the SEP. Now we have to find new λ and
y as left and right singular vectors of the matrix

B̃ =
n∑

j=1

xjA
′
j

corresponding to the maximal singular value. This can be done by a power method.
The convergence speed of the power method is determined by the ratio of the two
largest singular values. Since x is close to the solution, then the second largest singular
value of B̃ is small (σ2 ∼ ε) and the λ and y converge linearly with convergence speed
proportional to ε.

To determine x̂j , observe that the problem (2.7) is, in fact, a problem of finding
the minimal singular value of a matrix

B̂ = [vec(B′
1), . . . , vec(B′

n)],

where the operator vec transforms a matrix into a vector taking the elements column-
by-column. Therefore, x̂ is an eigenvector (normalized to have a unit norm) corre-
sponding to the minimal eigenvalue of the n× n matrix Γ = B̂�B̂:

Γx̂ = γminx̂.

This matrix Γ plays the key role in the solution process. Its elements are given by

Γsl = (B′
s, B

′
l)
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where (·, ·) is the Frobenius (Euclidean) scalar product of matrices.2 To calculate
the new vector x̂, we need to find the minimal eigenvalue and the corresponding
eigenvector of the matrix Γ.

The solution of the problem (2.5) consists of two parts:
1. calculation of the matrix Γ;
2. finding the minimal eigenvalue and the corresponding eigenvector of the ma-

trix Γ.
Since only one eigenvector for Γ is to be found, we propose to use the shifted

inverse iteration using x̂ from the previous iteration as an initial guess. The complexity
is then O(n3).

Let us estimate the number of arithmetic operations required for step 1. The
straightforward implementation of this step includes O(n2r+ nr2) operations for the
calculation of B′

j and O(n2rn) operations for the calculation of Γ = B̂�B̂. The total
cost of step 1 is

O(n3r + n2r + nr2).

However, Γ can be computed more efficiently without the explicit computation of
the Householder matrices, which is described below.

2.2.2. Calculation of the matrix Γ. In this section we suggest an efficient
method to acquire the entries of Γ. Recall that

Γsl = (B′
s, B

′
l), i, j = 1, . . . , n.

Thus, we need the scalar products (B′
s, B

′
l). From the definition of B′

j it follows that
B′

j and Â′
j are connected in the following way:

B′
j = Â′

j − Â′
je1e

�
1 − e1e�1 Â′

j + (Â′
j)11e1e

�
1 .

Hence, the required scalar products are expressed as

(B′
s, B

′
l) = (Â′

s, Â
′
l)− (Â′

se1, Â
′
le1)− (Â′�

s e1, Â
′�
l e1) + (Â′

s)11(Â
′
l)11.

Taking into account that Â′
j = CA′

jH
�, we have

(2.9) Γsl = (B′
s, B

′
l) = (A′

s, A
′
l)−

(A′
sy,A

′
ly)

||y||2 − ((A′
s)

�λ, (A′
l)
�λ)

||λ||2 +
(A′

sy, λ)(A′
ly, λ)

||y||2||λ||2 .

A fast computation of Γ can be based on (2.9). Note also that

(A′
s, A

′
l) =

∑
ki

(A′
s)ki(A′

l)ki =
∑
ki

(Ak)is(Ak)il =

(
n∑

k=1

A�
k Ak

)
sl

;

therefore, the first summand (A′
s, A

′
l) can be computed once and for all y and λ

in O(n3r) operations. The cost of computing vectors Asy and (A′)�s λ for all s =
1, . . . , n is O(n2r + r2n). The cost of computing scalar products (A′

sy,A
′
ly) and

((A′)�s λ, (A′)�l λ) is of the same order. The total complexity of computing Γ is

O(n3r)

2For two matrices X and Y of dimensions n × m the Frobenius scalar product is (X, Y )F =∑n
i=1

∑m
j=1 xijyij .
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operations on the zero (initialization) step for the given matrices A1, . . . , Ak plus

O(n2r + nr2)

operations for each y and λ arising during iterations.
Now we are ready to describe the algorithm for solving the SEP.
Algorithm 2.2. Given a sequence of n × n matrices A1, . . . , Ar and an initial

approximation to the solution of the SEP (2.2) x0, y0, λ0, proceed as follows:
1. Set k = 0, and calculate the initial Gram matrix

Γ0 =
r∑

i=1

A�
i Ai.

2. If xk, yk, and λk have converged, then stop, else continue.
3. Calculate the vectors A′

sy
k and A′

sλ
k for all s = 1, . . . , n.

4. Calculate the matrix Γ using (2.9).
5. Set xk+1 to the eigenvector corresponding to the minimal eigenvalue of Γ.
6. Calculate yk+1 and λk+1 from (2.8).
7. Increase k by 1, and proceed to the step 2.

The selection of the stopping criterion is a very delicate issue and may be problem-
dependent. In our experiments we used a criterion based on the functional value: If
the functional being minimized changes less than a prescribed tolerance, then we stop.

It is important to note that the matrix Γ can be updated fast during the work
of Algorithm 2.2. Indeed, the “hardest” work on each step of Algorithm 2.2 is the
calculation of

Γ0 =
r∑

k=1

B�
k Bk.

After the QZ equivalence transformation of each Bk, Γ0 becomes

r∑
k=1

B̂�
k B̂k =

r∑
k=1

(QmBkZm)�QmBkZm = Z�
mΓ0Zm.

We need to calculate

Γ̂0 =
r∑

k=1

C�
k Ck,

where Ck is an (n − 1) × (n − 1) leading principal submatrix of B̂k starting from
position (2, 2). It is straightforward to see that

(C�
k Ck)ij = (B̂�

k B̂k)(i+1)(j+1) − (B̂k)i1(B̂k)j1, i = 1, . . . , n− 1, j = 1, . . . , n− 1.

Consequently,

(Γ̂0)ij = (Z�
mΓ0Zm)(i+1)(j+1) −

r∑
k=1

(B̂k)i1(B̂k)j1, i = 1, . . . , n− 1, j = 1, . . . , n− 1.

The complexity of this update is O(n2r).
It remains to analyze the convergence properties of the algorithm.
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3. Convergence. Assume that x∗, y∗, and λ∗ solve the nonlinear minimization
problem

(3.1)
r∑

k=1

||Akx− λky||2 → min,

||x|| = 1,

and

(3.2) Akx
∗ = λ∗ky

∗ + εk.

Suppose we have constructed approximations

y = y∗ + δy,

λ = λ∗ + δλ

and then computed the new approximation x to x∗ using the Algorithm 2.1. What
can we say about ||x− x∗||?

Recall that (3.2) can be written in terms of matrices A′
j ; so (2.6) takes on the

form

(3.3)
n∑

j=1

x∗jA
′
j = λ∗(y∗)� + ε,

where the residue ε is inserted. Obviously, it can be assumed that ||y∗|| = ||λ∗||. Also
we will need the normalized vectors

ỹ =
y

||y|| , λ̃ =
λ

||λ|| , ỹ∗ =
y∗

||y∗|| , λ̃∗ =
λ∗

||λ∗|| .

The vector x is an eigenvector of the matrix Γ defined by (2.9); this is a direct corollary
from Theorem 2.1. Denote by Γ∗ the matrix for y∗ and λ∗. Then the following lemma
holds true.

Lemma 3.1. The following inequality holds:

|(Γx∗ − Γ∗x∗)s|
≤ ||A′

s||(||y∗|| ||λ∗||(4 ||δỹ||2 + ||δỹ|| ||δλ̃||+ 4 ||λ̃||2) + ||ε||(||δỹ||+ ||δλ̃||))
+ O(δ3 + ||ε||δ2),

where δ = max(||δy||, ||δλ||).
Proof. Using the definition of the matrix Γ and the equality (3.3) we have

((Γ− Γ0)x∗)s = −
(
A′

sỹ,
n∑

l=1

x∗lA
′
lỹ

)
−
(

(A′
s)

�λ̃,
n∑

l=1

x∗l (A
′
l)
�λ̃

)

+ (asỹ, λ̃)

(
n∑

l=1

x∗lA
′
lỹ, λ̃

)
= −(A′

sỹ, λ
∗)(y∗, ỹ)− (A′

sỹ, εỹ)− ((A′
s)

�λ̃, y∗)(λ∗, λ̃)

− ((A′
s)

�λ̃, ε�λ̃) + (A′
sỹ, λ̃)((y∗, ỹ)(λ∗, λ̃) + (εỹ, λ̃)).
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Now set

ỹ = ỹ∗ + δỹ, λ̃ = λ̃∗ + δλ̃.

Since ||ỹ|| = ||ỹ∗|| = 1 and

(δỹ, y∗) = −2 ||y∗|| ||δỹ||2,
we obtain the following first order terms (denoted by Φ1):

Φ1 = −(A′
sδỹ, εỹ

∗)− (A′
sỹ

∗, εδỹ)− ((A′
s)

�λ̃∗, ε�δλ̃)− ((A′
s)

�δλ̃, ε�λ̃∗)

+ (A′
sỹ

∗, δλ̃)(εỹ∗, λ̃∗) + (A′
sδỹ, λ̃

∗)(εỹ∗, λ̃∗)

+ (A′
sỹ

∗, λ̃∗)((εδỹ, λ̃∗) + (εỹ∗, δλ̃)).

Φ1 is estimated from above by

4 ||A′
s|| ||ε|| (||δỹ||+ ||δλ̃||).

The second order terms are estimated in the same way (we omit terms of order
O(δ2||ε||)). We give here only the final result:

|Φ2| ≤ ||y∗|| ||λ∗|| ||A′
s|| ||δỹ|| ||δλ̃||+ 4 ||A′

s|| ||y∗|| ||λ∗|| (||δỹ||2 + ||δλ̃||2).
To finish the proof, it is left to note that |((Γ − Γ∗)x∗)s| ≤ (|Φ1| + |Φ2|) +
O(δ3 + δ2ε).

Now we can estimate the error in the approximate x.
Theorem 3.2. If x is computed from y and λ using the Algorithm 2.1, x∗, y∗,

and λ∗ are the solution of the minimization problem (3.1), and y∗ �= 0 and λ∗ �= 0,
then

(3.4) ||x− x∗|| ≤ 1
γn−1 − γn

√√√√ n∑
s=1

||A′
s||2 (C1δ

2 + C2||ε|| δ) +O(δ3 + ||ε||δ2),

where

δ = max(||δy||, ||δλ||),

C1 = 36, C2 = 8
(

1
||y∗|| +

1
||λ∗||

)
,

and γn, γn−1 are the two smallest eigenvalues of the matrix Γ∗.
Proof. If we consider matrix Γ as a perturbation of Γ∗, then x is a perturbation

of the eigenvector x∗. The Davis–Kahan sin θ theorem [4, 11] states that the angle θ
between the original and the perturbed eigenvectors is bounded by

sin θ ≤ ||r||
g
,

where g is an absolute spectral gap (matrix Γ∗ is a symmetric positive definite matrix;
in that case the spectral gap for the smallest eigenvalue is γn−1−γn; see, for example,
[11]) and r is the residual:

r = (Γ− λ∗I)x∗ = (Γ− Γ∗)x∗.
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Therefore,

||x− x∗|| ≤ 1
γn−1 − γn

||r|| +O(||r||2).

Now, applying the inequality of Lemma 3.1 and taking into account that

||δỹ|| ≤ 2
||δy||
||y∗|| +O(δ2), ||δλ̃|| ≤ 2

||δλ||
||λ∗|| +O(δ2),

we arrive at (3.4).
The estimate (3.4) fully describes the local convergence of our method. If ||ε|| = 0

(that is, matrices Ak can be exactly reduced to the triangular form), then the conver-
gence is quadratic. In the case of nonzero but sufficiently small ||ε||, the convergence
is linear, but the convergence speed is proportional to ||ε||.

Remark 1. An important requirement for the matrix Γ∗ is that the minimal
eigenvalue is simple and sufficiently well-separated. What happens if the minimal
eigenvalue is not well separated from others is still an open question, both from the-
oretical and algorithmical points of view. A good solution seems to use a Levenberg–
Marquardt modification of the Gauss–Newton method. It would be also interesting
to analyze the relationship between the conditioning of the initial problem and the
eigenvalues of the matrix Γ∗.

Remark 2. The numerical experiments show that when ||ε|| is small enough, the
algorithm converges globally (that means that it converges from any initial approxi-
mation (x0, λ0, y0) to the solution of the minimization problem). But at present we
have no rigorous formulations of the conditions required (and/or sufficient) for the
algorithm to be globally convergent.

Remark 3. The use of Gramians is known to be numerically unstable. Why do
we use Gramians in that case? The answer is that we sacrifice accuracy for speed.
The direct solution of the minimization problem (3.1) (a main step of the algorithm)
by means of, for example, SVD requires n3r operations, and since a suitable updating
technique during deflation is not currently known, it leads to n4r complexity (com-
pared with the n3r complexity of our method). The price is that we may have only
(in the ill-conditioned problem) O(

√
η) accuracy, where η is the relative machine pre-

cision. In our case η = 10−16; thus, eight correct digits are available. This is more
than enough in most of the applications (especially when the approximation error is
large, say, ε ∼ 10−3 − 10−5).

Remark 4. As was already mentioned, the requirement λ∗ �= 0 is not restrictive,
because that means that the matrices A′

k are approximately linearly dependent and we
can replace their linear combination

∑n
j=1 xjA

′
j by a linear combination of a smaller

number of matrices that form a basis in a linear subspace spanned by A′
k. Accurate

analysis and the implementation (which vectors can be considered linearly dependent,
the threshold selection, etc.) are the subject for future research.

4. Numerical experiments. In this section we present some numerical exper-
iments confirming the efficiency of our method. It was implemented in Fortran. The
numerical experiments were performed on a Pentium 4 machine, 3.2 Ghz with g77
3.4.3 compiler optimized with -O3 option, with Lapack 2.0 and Atlas 3.4.1 libraries
for matrix operations.

The first series of examples is created in the following way. We generate two
random n × n matrices X and Y and r diagonal matrices Λk, k = 1, . . . , r, of the
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Table 4.1

Timings (in seconds) for the computation of SGSD of 10 n-by-n matrices.

n Time
16 0.01
32 0.11
64 1.6
128 14.77
256 210.61

Table 4.2

Timings (in seconds) for the computation of SGSD of n n-by-n matrices.

n Time
16 0.02
32 0.14
64 3.41
128 54.96
256 810.77

same size, and a set of matrices

Ak = XΛkY, k = 1, . . . , r.

The elements of X and Y and Λk are uniformly distributed on the interval [−1, 1].
As it was shown in [9], these sequences of matrices have an exact SGSD, because we
can find orthogonal Q and Z such that

X = QR1, Y = R2Z,

with R1 and R2 being upper triangular. We also corrupt these matrices with multi-
plicative noise, setting

(Âk)ij = (Ak)ij(1 + σφ),

where φ are taken from the uniform distribution on [−1, 1] and σ is a “noise level.”
We are interested in the following quantities:

• the convergence speed, its dependence on n,r, and σ;
• the stability. The dependence of the residue of the SGSD on σ. The residue

is defined as (
r∑

k=1

||Ak −QTkZ||2F
)1/2

.

We have observed that the speed of the algorithm does not depend pronouncedly on
σ. The independence from σ means that the computational cost of the iterations
(proportional to the number of iterations) is small relative to the cost of the update
procedures done in each deflation step.

We perform two experiments. First we fix r and σ setting them to 10 and 10−6,
respectively, and change n. The timings (in seconds) are given in Table 4.1.

In the second experiment we set r = n. Corresponding timings are given in Table
4.2.

To check stability we take fixed r = n = 64 and vary the noise level. For each
noise level 10 test sequences of matrices are generated, and the mean, maximal, and
minimal values of the residue are reported in Table 4.3.
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Table 4.3

Residues for different noise levels.

σ Mean residue Min residue Max residue

10−16 2 · 10−15 9 · 10−16 5 · 10−15

10−15 7 · 10−15 1 · 10−15 2 · 10−14

10−14 3 · 10−14 4 · 10−15 8 · 10−14

10−13 5 · 10−14 4 · 10−14 8 · 10−14

10−12 2 · 10−12 4 · 10−13 4 · 10−12

10−11 6 · 10−11 4 · 10−12 1 · 10−11

10−10 4 · 10−10 4 · 10−11 1 · 10−9

10−9 2 · 10−8 4 · 10−10 5 · 10−8

10−8 4 · 10−8 4 · 10−9 1 · 10−7

10−7 2 · 10−7 4 · 10−8 7 · 10−7

10−6 6 · 10−7 4 · 10−7 1 · 10−6

10−5 2 · 10−5 4 · 10−6 5 · 10−5

10−4 4 · 10−4 4 · 10−5 1 · 10−3

10−3 2 · 10−3 4 · 10−4 6 · 10−3

5. Conclusion. In this paper a problem of the calculation of the SGSD is consid-
ered. It is shown that this problem can be reduced to a series of smaller optimization
problems which are a direct generalization of the generalized eigenvalue problem; that
is why we called it the SEP. We have proposed the fast Gauss–Newton algorithm for
the solution of the SEP and shown that the computations can be performed effi-
ciently using careful update techniques. A local quasi-quadratic convergence result is
obtained. If the number of matrices r is of order n (what frequently happens, if we use
the SGSD for the computation of the canonical decomposition), then the complexity
of the algorithm is O(n4) arithmetic operations. The efficiency and robustness of the
algorithm was demonstrated by some numerical examples. These examples, however,
are rather artificial. The comparison with other methods and applications to real life
problems will be reported elsewhere.
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Abstract. Structured backward perturbation analysis plays an important role in the accuracy
assessment of computed eigenelements of structured eigenvalue problems. We undertake a detailed
structured backward perturbation analysis of approximate eigenelements of linearly structured matrix
pencils. The structures we consider include, for example, symmetric, skew-symmetric, Hermitian,
skew-Hermitian, even, odd, palindromic, and Hamiltonian matrix pencils. We also analyze struc-
tured backward errors of approximate eigenvalues and structured pseudospectra of structured matrix
pencils.
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1. Introduction. Backward perturbation analysis and condition numbers play
an important role in the accuracy assessment of computed solutions of eigenvalue
problems. Backward perturbation analysis determines the smallest perturbation for
which a computed solution is an exact solution of the perturbed problem. On the other
hand, condition numbers measure the sensitivity of solutions to small perturbations
in the data of the problem. Thus, backward errors when combined with condition
numbers provide approximate upper bounds on the errors in the computed solutions.

Structured eigenvalue problems occur in many applications (see, for example, [16,
21, 25] and the references therein). With a view to preserving structures and their
associated properties, structured preserving algorithms for structured eigenproblems
have been proposed in the literature (see, for example, [4, 5, 7, 11, 20, 21] and the
references therein). Consequently, there is a growing interest in the structured per-
turbation analysis of structured eigenproblems (see, for example, [10, 13, 12, 24, 22, 6]
for sensitivity analysis of structured eigenproblems).

The main purpose of this paper is to undertake a detailed structured backward
perturbation analysis of approximate eigenelements of linearly structured matrix pen-
cils. Needless to mention that structured backward errors when combined with struc-
tured condition numbers provide approximate upper bounds on the errors in the
computed eigenelements. Hence, structured backward perturbation analysis plays an
important role in the accuracy assessment of approximate eigenelements of structured
pencils. Further, it also plays an important role in the selection of an optimum struc-
tured linearization of a structured matrix polynomial [1]. This assumes significance
due to the fact that linearization is a standard approach to solving a polynomial
eigenvalue problem (see, for example, [15] and the references therein).

We consider regular matrix pencils of the form L(λ) = A + λB, where A and B
are square matrices of size n. We assume L to be linearly structured, that is, L to be
an element of a real or a complex linear subspace S of the space of pencils. More
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specifically, we consider ten special classes of linearly structured pencils, namely,
T -symmetric, T -skew-symmetric, T -odd, T -even, T -palindromic, H-Hermitian, H-
skew-Hermitian, H-even and H-odd, and H-palindromic. These structures, defined
in the next section, are prototypes of structured pencils which occur in many applica-
tions (see, [16, 21] and the references therein). We also consider S to be the space of
pencils whose coefficient matrices are elements of Jordan and/or Lie algebras associ-
ated with the scalar product (x, y) �→ yTMx or (x, y) �→ yHMx, where M is unitary
and MT = ±M or MH = ±M. For example, when M := ( 0 I

−I 0

)
, the Lie and Jordan

algebras associated with the scalar product (x, y) �→ yHMx consist of Hamiltonian
and skew-Hamiltonian matrices, respectively. The structures so considered encom-
pass a wide variety of structured pencils and, in particular, include pencils whose
coefficient matrices are Hamiltonian and skew-Hamiltonian. We show, however, that
analyzing these wide classes of structured pencils ultimately boils down to analyzing
one of the ten special classes of structured pencils considered above. Consequently, in
this paper, we consider these ten special classes of structured pencils and investigate
structured backward perturbation analysis of approximate eigenelements.

So, let S be the space of pencils having one of the ten structures. Let L ∈ S

and (λ, x) ∈ C × Cn with xHx = 1. Then we define the structured backward error
ηS(λ, x,L) of (λ, x) by

ηS(λ, x,L) := inf{|||ΔL||| : ΔL ∈ S and L(λ)x + ΔL(λ)x = 0}.

Here the pencil norm |||L||| is given by |||L||| := √‖A‖2 + ‖B‖2, where L(z) = A + zB
and ‖ · ‖ is either the spectral norm or the Frobenius norm on Cn×n. The main
contributions of this paper are as follows.

Given (λ, x) ∈ C × Cn with xHx = 1 and L ∈ S, we show that there is a
pencil K ∈ S such that L(λ)x + K(λ)x = 0. Consequently, ηS(λ, x,L) < ∞. We
determine ηS(λ, x,L) and construct a pencil ΔL ∈ S such that |||ΔL||| = ηS(λ, x,L) and
L(λ)x+ΔL(λ)x = 0. Moreover, we show that ΔL is unique for the Frobenius norm on
Cn×n, but there are infinitely many such ΔL for the spectral norm on Cn×n. Further,
for the spectral norm, we show how to construct all such ΔL. In either case, we show
that if K ∈ S is such that L(λ)x+ K(λ)x = 0, then K = ΔL + (I − xxH)∗ N(I − xxH)
for some N ∈ S, where (I−xxH)∗ denotes the transpose or the conjugate transpose of
(I−xxH) depending upon the structure defined by S. Furthermore, we show that the
unstructured backward error η(λ, x,L) of (λ, x) is a lower bound of ηS(λ, x,L) and is
attained by ηS(λ, x,L) for certain λ ∈ C. However, η(λ, x,L) �= ηS(λ, x,L) for most
λ ∈ C.

Next, we consider structured pseudospectra of structured matrix pencils. It is a
well-known fact that pseudospectra of matrices and matrix pencils are powerful tools
for sensitivity and perturbation analysis (see, [26] and the references therein). We
consider structured and unstructured ε-pseudospectra

ΛS

ε(L) :=
{
λ ∈ C : ηS(λ,L) ≤ ε} and Λε(L) := {λ ∈ C : η(λ,L) ≤ ε}

of L, where ηS(λ,L) := minxHx=1 η
S(λ, x,L) and η(λ,L) := minxHx=1 η(λ, x,L), re-

spectively, are structured and unstructured backward errors of an approximate eigen-
value λ.When L is T -symmetric or T -skew-symmetric pencils, we show that ηS(λ,L) =
η(λ,L) for the spectral norm and ηS(λ,L) =

√
2 η(λ,L) for the Frobenius norm. Con-

sequently, for these structures, we show that ΛS
ε(L) = Λε(L) for the spectral norm and

ΛS
ε(L) = Λε/√2(L) for the Frobenius norm. For the rest of the structures, we show
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that there is a set Ω ⊂ C such that ΛS
ε(L)∩Ω = Λε(L)∩Ω. For example, Ω = R when

L is H-Hermitian or H-skew-Hermitian and Ω = iR when L is H-even or H-odd.
Often the spectrum of L is symmetric with respect to Ω. When Ω does not contain an
eigenvalue of L, it is of practical importance to determine the smallest perturbation
ΔL ∈ S of L such that L + ΔL has an eigenvalue in Ω. We show how to construct
such a ΔL. Indeed, we show that the equality ΛS

ε(L) ∩ Ω = Λε(L) ∩ Ω plays a crucial
role in the construction of such a ΔL.

The paper is organized as follows. In section 2, we define the ten special classes of
structured pencils mentioned above. We also discuss some basic facts about spectral
symmetry of structured pencils and, given (λ, x) ∈ C × Cn and a structured pencil
L, we show that there exists a structured pencil K such that L(λ)x + K(λ)x = 0. In
section 3, we undertake a detailed structured backward perturbation analysis when
C
n×n is equipped with the Frobenius norm. For each of the ten structures, we derive

ηS(λ, x,L) and a unique ΔL ∈ S such that L(λ)x + ΔL(λ)x = 0. In section 4, we
undertake a detailed structured backward perturbation analysis for each of the ten
classes of structured pencils when Cn×n is equipped with the spectral norm. We show
that the choice of a norm on Cn×n plays a crucial role in the structured backward
perturbation analysis. Finally, in section 5, we analyze structured pseudospectra of
structured pencils.

Notation. We consider 2-norm on Cn defined by ‖x‖2 := (xHx)1/2, where xH

is the conjugate transpose of x. We denote the set of n-by-n matrices with real or
complex entries by Cn×n. For A ∈ Cn×n, we denote the transpose of A by AT and the
conjugate transpose of A by AH . We consider spectral norm and the Frobenius norm
on Cn×n. For A ∈ Cn×n, the spectral norm of A is given by ‖A‖2 := max‖x‖2=1 ‖Ax‖2
and the Frobenius norm of A is given by ‖A‖F := (trace(AHA))1/2. We denote the
smallest singular value of A ∈ Cn×n by σmin(A). The Moore–Penrose inverse of A
is denoted by A†. As usual, the conjugate of a complex number z is denoted by z.
For a matrix A, A denotes the matrix whose entries are conjugate of that of A. The
spectrum of A ∈ Cn×n is denoted by Λ(A).

2. Structured matrix pencils. We consider n-by-n matrix pencils of the form
L(λ) := A + λB, where A,B ∈ Cn×n, and λ ∈ C. Thus, the set of n-by-n matrix
pencils consists of affine transformations from C to Cn×n which we denote by An×n.
Hence, A

n×n is a vector space which we endow with an appropriate norm |||·||| as
follows. Let L ∈ An×n be given by L(λ) = A + λB. Then we define the pencil norm
|||L||| by

|||L||| := (‖A‖2 + ‖B‖2)1/2 ,(2.1)

where ‖ · ‖ is either the spectral norm or the Frobenius norm on Cn×n. We refer to [3]
for various other norms on An×n. It is evident that ‖L(λ)‖ ≤ |||L||| ‖(1, λ)‖2.

The spectrum Λ(L) of a regular pencil L ∈ A
n×n is given by

Λ(L) := {λ ∈ C : rank(L(λ)) < n}.
To be precise, Λ(L) consists of finite eigenvalues of L. When B is singular, the pencil L
has an infinite eigenvalue. In this paper, we consider only finite eigenvalues of matrix
pencils. By convention, if (λ, x) ∈ C× Cn, then x is assumed to be nonzero, that is,
x �= 0. Treating (λ, x) as an approximate eigenpair of L, we define the backward error
of (λ, x) by

η(λ, x,L) := inf{|||ΔL||| : ΔL ∈ A
n×n and L(λ)x + ΔL(λ)x = 0}.
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We follow the convention that if L is given by L(λ) = A+ λB, then the pencil ΔL to
be of the form ΔL(λ) = ΔA+ λΔB. Let (λ, x) ∈ C×Cn. Then setting r := −L(λ)x,
we have

η(λ, x,L) =
‖r‖2

‖x‖2‖(1, λ)‖2 .

Indeed, defining ΔA := rxH

xHx(1+|λ|2) and ΔB := λrxH

xHx(1+|λ|2) , and considering the pencil
ΔL(z) = ΔA+ zΔB, we have |||ΔL||| = ‖r‖2/‖x‖2‖(1, λ)‖2 and L(λ)x + ΔL(λ)x = 0.

Next, let S be a (real or complex) linear subspace of An×n. Pencils in S will be
referred to as structured pencils. Let L ∈ S. Then treating (λ, x) ∈ C × Cn×n as an
approximate eigenpair of L, we define the structured backward error of (λ, x) by

ηS(λ, x,L) := inf{|||ΔL||| : ΔL ∈ S and L(λ)x + ΔL(λ)x = 0}.

Obviously, we have η(λ, x,L) ≤ ηS(λ, x,L). Let L be given by L(z) = A + zB. Then
the ten special structures of L we consider in this paper are as follows.

• T -symmetric: L(λ)T = L(λ) for all λ ∈ C, that is, AT = A and BT = B.
• T -skew-symmetric: L(λ)T = −L(λ) for all λ ∈ C, that is, AT = −A and
BT = −B.
• T -even: L(λ)T = L(−λ) for all λ ∈ C, that is, AT = A and BT = −B.
• T -odd: L(λ)T = −L(−λ) for all λ ∈ C, that is, AT = −A and BT = B.
• T -palindromic: L(λ)T = λL(1/λ) for all λ �= 0, that is, B = AT .
• H-Hermitian: L(λ)H = L(λ) for all λ ∈ C, that is, AH = A and BH = B.
• H-skew-Hermitian: L(λ)H = −L(λ) for all λ ∈ C, that is, AH = −A and
BH = −B.
• H-even: L(λ)H = L(−λ) for all λ ∈ C, that is, AH = A and BH = −B.
• H-odd: L(λ)H = −L(−λ) for all λ ∈ C, that is, AH = −A and BH = B.
• H-palindromic: L(λ)H = λL(1/λ) for all λ �= 0, that is, B = AH .

Let L be a regular pencil. We say that (λ, x, y) is an eigentriple of L if λ is
an eigenvalue of L and x and y, respectively, are right and left eigenvectors of L
corresponding to λ; that is, L(λ)x = 0 and yHL(λ) = 0. An eigentriple (λ, x, y) is
said to be normalized if yHy = xHx = 1. We consider only normalized eigentriples.
Now, for ready reference, we collect some basic facts about eigenpairs of structured
pencils in the following theorem.

Theorem 2.1. Let L ∈ S be given by L(z) = A+ zB. Let (λ, x) ∈ C× C
n be an

eigenpair of L. Then we have the following.

S eigenvalue pairing eigentriple xT Ax xT Bx

T -symmetric λ (λ, x, x) in C in C

T -skew-symmetric λ (λ, x, x) 0 0

T -even (λ,−λ) (λ, x, y), (−λ, y, x) 0 0

T -odd (λ,−λ) (λ, x, y), (−λ, y, x) 0 0 if λ �= 0

T-palindromic (λ, 1/λ) (λ, x, y), (1/λ, y, x) 0 if λ �= −1 0 if λ �= −1

eigenvalue pairing eigentriple xHAx xHBx

H-Hermitian / (λ, λ) (λ, x, y) 0 if im λ �= 0 0 if im λ �= 0

H-skew-Hermitian (λ, y, x)

H-even/ (λ,−λ) (λ, x, y) 0 if re λ �= 0 0 if re λ �= 0

H-odd (−λ, y, x)

H-palindromic (λ, 1/λ) (λ, x, y), (1/λ, y, x) 0 if |λ| �= 1 0 if |λ| �= 1
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Proof. Note that when L is T -symmetric or T -skew-symmetric, we have L(λ)x = 0
and xHL(λ) = 0. Hence, (λ, x, x) is an eigentriple of L. In particular, if L is T -skew-
symmetric, then both A and B are skew-symmetric and, hence, xTAx = 0 = xTBx.

When L is T -even or T -odd, we have L(λ)T = L(−λ) or L(λ)T = −L(−λ). Hence,
if L(λ)x = 0 and L(−λ)y = 0, then xHL(−λ) = 0 and yHL(λ) = 0. This shows (λ,−λ)
pairing of eigenvalues and that (λ, x, y) and (−λ, y, x) are eigentriples. When L is T -
even, B is skew-symmetric and, hence, xTBx = 0. Consequently, xTL(λ)x = 0 ⇒
xTAx = 0. Similarly, when L is T -odd, A is skew-symmetric and, hence, xTAx = 0.
Consequently, xTL(λ)x = 0 ⇒ xTBx = 0 whenever λ �= 0. The proof is similar for
H-Hermitian, H-skew-Hermitian, H-odd, and H-even pencils.

Now let L be T -palindromic given by L(z) = A+ zAT . Suppose that λ �= 0. Then
L(λ)x = 0 ⇒ xHL(1/λ) = 0 which shows (λ, 1/λ) pairing of eigenvalues. It also
follows that (λ, y, x) is an eigentriple of L if and only if (1/λ, x, y) is an eigentriple of
L. Note that xTL(λ)x = 0⇒ xTAx+ λxTAx = 0. Thus, if λ �= −1, then xTAx = 0.

Similarly, when L is H-palindromic it follows that (λ, y, x) is an eigentriple of L
if and only if (1/λ, x, y) is an eigentriple of L. Now xHL(λ)x ⇒ xHAx + λ xHAx =
0 ⇒ |xHAx| = |λ| |xHAx| ⇒ (1 − |λ|) |xHAx| = 0. Hence, for |λ| �= 1, we have xH

Ax = 0.
Next, we show that if (λ, x) ∈ C× Cn and L ∈ S, then there exists ΔL ∈ S such

that (λ, x) is an eigenpair of L + ΔL, that is, L(λ)x+ ΔL(λ)x = 0. Consequently, we
have ηS(λ, x,L) <∞.

Theorem 2.2. Let S ∈ {T -symmetric, T -skew-symmetric, T -odd, T -even,
H-Hermitian, H-skew-Hermitian, H-odd, H-even} and L ∈ S be given by L(z) =
A+ zB. Let (λ, x) ∈ C× Cn be such that xHx = 1. Set r := −L(λ)x and define

ΔA :=

⎧⎪⎨
⎪⎩
−xxTAxxH + 1

1+|λ|2
[
xrT + rxH − 2

(
xT r

)
xxH

]
, if A = AT ,

− 1
1+|λ|2

[
xrT − rxH] , if A = −AT ,

ΔB :=

⎧⎨
⎩
−xxTBxxH + λ

1+|λ|2
[
xrT + rxH − 2

(
xT r

)
xxH

]
, if B = BT ,

− λ
1+|λ|2

[
xrT − rxH] , if B = −BT ,

and

ΔA :=

⎧⎨
⎩
−xxHAxxH + 1

1+|λ|2
[
xrH

(
I − xxH) +

(
I − xxH) rxH] , if A = AH ,

−xxHAxxH − 1
1+|λ|2

[
xrH

(
I − xxH)− (

I − xxH) rxH] , if A = −AH .

ΔB :=

⎧⎨
⎩
−xxHBxxH + 1

1+|λ|2
[
λxrH

(
I − xxH) + λ

(
I − xxH) rxH ] , if B = BH

−xxHBxxH − 1
1+|λ|2

[
λxrH

(
I − xxH)− λ (I − xxH) rxH ] , if B = −BH .

Consider the pencil ΔL(z) = ΔA+ zΔB. Then ΔL ∈ S and L(λ)x+ ΔL(λ)x = 0.
Proof. The proof is computational and is easy to check.
For palindromic pencils, we have the following result.
Theorem 2.3. Let S ∈ {T -palindromic, H-palindromic} and L ∈ S be given by

L(z) = A + zA∗, where A∗ = AT or A∗ = AH . Let (λ, x) ∈ C × Cn be such that
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xHx = 1. Set r := −L(λ)x and define

ΔA :=

⎧⎨
⎩
−xxTAxxH + 1

1+|λ|2
[
λxrT

(
I − xxH) +

(
I − xxT ) rxH] , if B = AT ,

−xxHAxxH + 1
1+|λ|2

[
λxrH

(
I − xxH) +

(
I − xxH) rxH] , if B = AH .

Consider the pencil ΔL(z) = ΔA+ z(ΔA)∗. Then ΔL ∈ S and L(λ)x+ ΔL(λ)x = 0.
Proof. The proof is computational and is easy to check.
In section 3, we consider general classes of linearly structured pencils whose coef-

ficient matrices are elements of certain Jordan and/or Lie algebras and show that for
these pencils structured backward perturbation analysis ultimately reduces to that of
one of the ten classes of structured pencils discussed above.

3. Frobenius norm and structured backward errors. Let (λ, x) ∈ C ×
Cn. Unless stated otherwise, we always assume that xHx = 1. Let L ∈ S be given
by L(z) = A + zB. In this section, we determine the structured backward error
ηS(λ, x,L) when Cn×n is equipped with the Frobenius norm. Recall that the pencil
norm defined in (2.1) is then given by |||L||| :=

√‖A‖2F + ‖B‖2F = ‖[A B]‖F . Also
recall that the unstructured backward error η(λ, x,L) for the spectral norm as well as
for the Frobenius norm on Cn×n is given by η(λ, x,L) = ‖L(λ)x‖2/‖(1, λ)‖2.

Theorem 3.1. Let S be the space of T -symmetric pencils and let L ∈ S be given
by L(z) = A+ zB. Then for (λ, x) ∈ C× C

n, setting r := −L(λ)x, we have

ηS(λ, x,L) =

√
2‖r‖22 − |xT r|2
‖(1, λ)‖2 ≤

√
2 η(λ, x,L).

Define ΔA := 1
1+|λ|2 [xrT + rxH − (rT x)xxH ] and ΔB := λ

1+|λ|2 [xrT + rxH − (rTx)
xxH ] and consider the pencil ΔL(z) = ΔA+zΔB. Then ΔL is T -symmetric, L(λ)x+
ΔL(λ)x = 0 and |||ΔL||| = ηS(λ, x,L).

Proof. By Theorem 2.2 there is a ΔL ∈ S such that L(λ)x + ΔL(λ)x = 0. Let
ΔL be given by ΔL(z) = ΔA + zΔB. Then we have (ΔA + λΔB)x = r. Choose
Q1 ∈ Cn×(n−1) such that Q := [x, Q1] is unitary. Then

Δ̃A := QTΔAQ =
(
a11 aT1
a1 A1

)
,

Δ̃B := QTΔBQ =
(
b11 bT1
b1 B1

)
,

QT r =
(

xT r
QT1 r

)
,

where A1 = AT1 and B1 = BT1 are of size n− 1. Since QQT = I, we have(
QΔ̃AQH + λQΔ̃BQH

)
x = r⇒

(
Δ̃AQH + λΔ̃BQH

)
x = QT r =

(
xT r
QT1 r

)
.

As QHx = e1, the first column of the identity matrix, we have(
Δ̃A+ λΔ̃B

)
QHx =

(
xT r
QT1 r

)
⇒

(
a11 + λb11
a1 + λb1

)
=
(

xT r
QT1 r

)
.

This gives a11 + λb11 = xT r and a1 + λb1 = QT1 r whose minimum norm solutions are

(a1 b1) = QT1 r

(
1
λ

)†
⇒ a1 =

1
1 + |λ|2Q

T
1 r, b1 =

λ

1 + |λ|2Q
T
1 r
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and (a11 b11) = xT r
(

1
λ

)†
⇒ a11 = 1

1+|λ|2x
T r, b11 = λ

1+|λ|2x
T r. Hence, we have

Δ̃A =

⎛
⎝ 1

1+|λ|2 x
T r 1

1+|λ|2
(
QT1 r

)T
1

1+|λ|2Q
T
1 r A1

⎞
⎠ , Δ̃B =

⎛
⎝ λ

1+|λ|2x
T r λ

1+|λ|2
(
QT1 r

)T
λ

1+|λ|2Q
T
1 r B1

⎞
⎠ .

This shows that the Frobenius norms of Δ̃A and Δ̃B are minimized when A1 = 0
and B1 = 0. Hence, ‖ΔA‖2F = ‖Δ̃A‖2F = |a11|2 + 2 ‖a1‖22 and ‖ΔB‖2F = ‖Δ̃B‖2F =
|b11|2 + 2 ‖b1‖22. Note that QQH = I ⇒ Q1Q

H
1 = I − xxH ⇒ Q1Q

T
1 = I − xxT .

Consequently, we have

|||ΔL||| = (‖ΔA‖2F + ‖ΔB‖2F
)1/2

=

√|xT r|2 + 2 ‖(I − xxT )r‖22
‖(1, λ)‖2 =

√
2‖r‖22 − |xT r|2
‖(1, λ)‖2 .

Next, we have

ΔA = QΔ̃AQH =
1

1 + |λ|2 xx
T rxH +

1
1 + |λ|2

[
xrTQ1Q

H
1 +Q1Q

T
1 rx

H
]
+Q1A1Q

H
1

=
1

1 + |λ|2
[
xrT + rxH − (

rTx
)
xxH

]
+Q1A1Q

H
1 ,

ΔB = QΔ̃BQH =
λ

1 + |λ|2 xx
T rxH +

1
1 + |λ|2

[
λxrTQ1Q

H
1 + λQ1Q

T
1 rx

H
]
+Q1B1Q

H
1

=
λ

1 + |λ|2
[
xrT + rxH − (

rTx
)
xxH

]
+Q1B1Q

H
1

from which we obtain the desired pencil by setting A1 = 0 and B1 = 0. This completes
the proof.

Observe that if Y is symmetric and Y x = 0, then Y = (I −xxH)TZ(I −xxH) for
some symmetric matrix Z. Consequently, we have Q1A1Q

H
1 = (I−xxH )TZ1(I−xxH )

and Q1B1Q
H
1 = (I − xxH)TZ2(I − xxH) for some symmetric matrices Z1 and Z2.

Hence, from the proof of Theorem 3.1 we have following.
Corollary 3.2. Let L be a T -symmetric pencil and (λ, x) ∈ C × Cn. Set r :=

−L(λ)x. Let K be a T -symmetric pencil. Then L(λ)x + K(λ)x = 0 if and only if
K(z) = ΔL(z)+(I−xxH)TN(z)(I−xxH) for some T -symmetric pencil N, where ΔL
is the T -symmetric pencil given in Theorem 3.1.

Next, we consider T -skew-symmetric pencils.
Theorem 3.3. Let S be the space of T -skew-symmetric pencils and let L ∈ S be

given by L(z) = A + zB. Let (λ, x) ∈ C × Cn and r := −L(λ)x. Then ηS(λ, x,L) =√
2 ‖r‖2/‖(1, λ)‖2 =

√
2 η(λ, x,L). Further, for the T -skew-symmetric pencil ΔL given

in Theorem 2.2, we have L(λ)x + ΔL(λ)x = 0 and |||ΔL||| = ηS(λ, x,L).
Proof. As A and B are skew-symmetric, from the proof of Theorem 3.1, we have

Δ̃A = QTΔAQ =
(

0 aT1
−a1 A1

)
,

Δ̃B = QTΔBQ =
(

0 bT1
−b1 B1

)
,

QT r =
(

xT r
QT1 r

)
,
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where A1 and B1 are skew-symmetric matrices of size n− 1. Consequently, as before,
we have (Δ̃A + λΔ̃B)QHx =

(
xT r

QT
1 r

)
which gives

(
0

−a1 − λb1

)
=

(
xT r

QT
1 r

)
. Note

that xT r = 0 and the smallest norm solution of −a1 − λb1 = QT1 r is given by

(a1 b1) = QT1 r

( −1
−λ

)†
⇒ a1 = − 1

1 + |λ|2Q
T
1 r, b1 = − λ

1 + |λ|2Q
T
1 r.

Hence, we have

ΔA = Q

(
0 − 1

1+|λ|2
(
QT1 r

)T
1

1+|λ|2Q
T
1 r A1

)
QH ,

ΔB = Q

(
0 − λ

1+|λ|2
(
QT1 r

)T
λ

1+|λ|2Q
T
1 r B1

)
QH .

Setting A1 = 0 and B1 = 0 we obtain ΔL such that |||ΔL||| = ηS(λ, x,L) =
√

2‖r‖2/
‖(1, λ)‖2.

Since Q1Q
T
1 = I − xxT , we have

ΔA = − 1
1 + |λ|2

[
xrT − rxH]+Q1A1Q

H
1 and ΔB = − λ

1 + |λ|2
[
xrT − rxH]+Q1B1Q

H
1 .

Setting A1 = B1 = 0 we obtain the T -skew-symmetric pencil ΔL given in Theo-
rem 2.2.

Using the fact that if Y is skew-symmetric and Y x = 0 then Y = (I−xxH)TZ(I−
xxH) for some skew-symmetric matrix Z, we obtain an analogue of Corollary 3.2 for
T -skew-symmetric pencils.

Next, we derive structured backward errors for T -even and T -odd pencils.
Theorem 3.4. Let S ∈ {T -even, T -odd} and L ∈ S be given by L(z) = A+ zB.

Let (λ, x) ∈ C× Cn and r := −L(λ)x. Then we have

ηS(λ, x,L) =

√
|xTAx|2 +

2‖r‖22 − 2|xT r|2
1 + |λ|2 =

√
2‖r‖22 + (|λ|2 − 1)|xT r|2

‖(1, λ)‖2
when L is T -even and

ηS(λ, x,L) =

⎧⎨
⎩
√
|xTBx|2 + 2‖r‖2

2−2|xT r|2
1+|λ|2 =

√
2‖r‖22 + (|λ|−2 − 1)|xT r|2

‖(1, λ)‖2 , if λ �= 0.
√

2 η(λ, x,L), if λ = 0,

when L is T -odd. The pencil ΔL ∈ S given in Theorem 2.2 satisfies L(λ)x+ΔL(λ)x =
0 and |||ΔL||| = ηS(λ, x,L).

Proof. First, assume that L is T -even. Then noting that A = AT and B = −BT ,
the proof follows from similar arguments as those employed for T -symmetric and
T -skew-symmetric pencils. Indeed, considering a unitary matrix Q := [x, Q1], we
have

Δ̃A := QTΔAQ =
(
a11 aT1
a1 A1

)
,

Δ̃B := QTΔBQ =
(

0 bT1
−b1 B1

)
,

QT r =
(

xT r
QT1 r

)
,
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where A1 = AT1 and B1 = −BT1 are of size n − 1. Consequently, we have (Δ̃A +
λΔ̃B)QHx =

(
xT r

QT
1 r

)
⇒

(
a11

a1 − λb1

)
=

(
xT r

QT
1 r

)
. This gives a11 = −xTAx. The

smallest norm solution of a1 + λb1 = QT1 r is given by

(a1 b1) = QT1 r

(
1
−λ

)†
⇒ a1 =

1
1 + |λ|2Q

T
1 r, b1 = − λ

1 + |λ|2Q
T
1 r.

Consequently, we have

ΔA = Q

⎛
⎝ −xTAx

(
1

1+|λ|2Q
T
1 r

)T
1

1+|λ|2Q
T
1 r A1

⎞
⎠QH ,

ΔB = Q

⎛
⎝ 0

(
− λ

1+|λ|2Q
T
1 r

)T
λ

1+|λ|2Q
T
1 r B1

⎞
⎠QH .

Setting A1 = B1 = 0 and using the fact that Q1Q
T
1 = I − xxT , we obtain the pencil

ΔL such that

|||ΔL||| = ηS(λ, x,L) =

√
|xTAx|2 +

2‖r‖22 − 2|xT r|2
1 + |λ|2 .

Now simplifying expressions for ΔA and ΔB, we obtain

ΔA = −xxTAxxH +
1

1 + |λ|2
[
xrT + rxH − 2

(
xT r

)
xxH

]
+Q1A1Q

H
1 ,

ΔB = − λ

1 + |λ|2
[
xrT − rxH] +Q1B1Q

H
1 .

Setting A1 = B1 = 0 we obtain the T -even pencil ΔL given in Theorem 2.2.
When L is T -odd, the results follow by interchanging the role of A and B.
It follows from Theorem 3.4 that for a T -even pencil, we have ηS(λ, x,L) ≤√

2 η(λ, x,L) when |λ| ≤ 1 and ηS(λ, x,L) ≤ ‖(1, λ)‖2 η(λ, x,L) when |λ| > 1. Sim-
ilarly, for a T -odd pencil, we have ηS(λ, x,L) ≤ √2 η(λ, x,L) when |λ| ≥ 1 and
ηS(λ, x,L) ≤ ‖(1, λ−1)‖2 η(λ, x,L) when λ �= 0 and |λ| < 1.

We mention that an analogue of Corollary 3.2 holds for T -even and T -odd pencils
as well. Now, we consider a T -palindromic pencil L(z) = A+ zAT .

Theorem 3.5. Let S be the space of T -palindromic pencils and L ∈ S be given
by L(z) = A+ zAT . Let (λ, x) ∈ C× Cn and r := −L(λ)x. Then we have

ηS(λ, x,L) =

⎧⎨
⎩
√

2
√
|xTAx|2 + ‖r‖2

2−|xT r|2
1+|λ|2 =

√
2

√‖r‖22 − 2reλ |xTAx|2
‖(1, λ)‖2 , if λ �= −1,

√
2 η(λ, x,L), if λ = −1.

In particular, we have ηS(λ, x,L) =
√

2 η(λ, x,L), if λ ∈ iR.
Now define

ΔA =

⎧⎨
⎩

1
1+|λ|2

[
λxrT

(
I − xxH) +

(
I − xxT ) rxH] , if λ = −1,

−xxTAxxH + 1
1+|λ|2

[
λxrT

(
I − xxH) +

(
I − xxT ) rxH] , if λ �= −1,
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and consider the pencil ΔL(z) = ΔA + z(ΔA)T . Then L(λ)x + ΔL(λ)x = 0 and
|||ΔL||| = ηS(λ, x,L).

Proof. By Theorem 2.3, there exists a T -palindromic pencil ΔL(z) = ΔA+zΔAT

such that (L(λ) + ΔL(λ))x = 0. Let Q1 ∈ Cn×(n−1) be such that Q := [x Q1] is
unitary. Then

Δ̃A := QTΔAQ =
(
a11 aT1
b1 A1

)
, QT r =

(
xT r
QT1 r

)
.

Now, if λ �= −1 then by Theorem 2.1, we have xT (ΔA+A)x = 0⇒ xTΔAx = −xTAx.
Hence, we have a11 = −xTAx. When λ = −1, we have λaT11 + a11 = xT r = 0 for any
a11. Since the aim is to minimize the Frobenius norm of ΔA, we set a11 = 0.

Next, the minimum norm solution of a1λ+ b1 = QT1 r is given by

(
a1 b1

)
= QT1 r

(
λ
1

)†
⇒ a1 =

λQT1 r

1 + |λ|2 , b1 =
QT1 r

1 + |λ|2 .

Therefore, when λ = −1, we have

ΔA = Q

⎛
⎝ 0

(
λQT

1 r
1+|λ|2

)T
QT

1 r
1+|λ|2 A1

⎞
⎠QH .

Setting A1 = 0, we obtain ηS(λ, x,L) = |||ΔL||| = √2‖r‖2/
√

1 + |λ|2 =
√

2 η(λ, x,L).
Since Q1Q

H
1 = I − xxH ⇒ Q1Q

T
1 = I − xxT , simplifying the expression for ΔA, we

obtain

ΔA =
1

1 + |λ|2
[
λxrT

(
I − xxH) +

(
I − xxT ) rxH] +Q1A1Q

H
1 .

When λ �= −1, we have

ΔA = Q

⎛
⎝ −xTAx

(
λQT

1 r
1+|λ|2

)T
QT

1 r
1+|λ|2 A1

⎞
⎠QH .

Setting A1 = 0, we obtain

ηS(λ, x,L) = |||ΔL||| =
√

2|xTAx|2 +
2‖[I − xxT ]r‖22

1 + |λ|2 =
√

2

√
|xTAx|2 +

‖r‖22 − |xT r|2
1 + |λ|2

from which the result follows. Since |xT r|2 = |xTAx|2(1+ |λ|2) when λ ∈ iR, we have
ηS(λ, x,L) =

√
2‖r‖2/‖(1, λ)‖2, for λ ∈ iR. Again, simplifying the expression for ΔA,

we obtain ΔA = −xxTAxxH + 1
1+|λ|2 [λxrT (I − xxH) + (I − xxT )rxH ] + Q1A1Q

H
1 .

This completes the proof.
Observe that from Theorem 3.5 we have ηS(λ, x,L) ≤ √2 η(λ, x,L) when reλ > 0

and ηS(λ, x,L) ≤ ‖(1,√|reλ|/|1 + λ|)‖2 η(λ, x,L) when λ �= −1 and reλ < 0.
Note that if Y ∈ C

n×n is such that Y x = 0 and Y Tx = 0, then Y = (I −
xxH)TZ(I−xxH) for some matrix Z. Hence, from the proof of Theorem 3.5, we obtain
an analogue of Corollary 3.2 for T -palindromic pencil. Indeed, if K is a T -palindromic
pencil such that L(λ)x+ K(λ)x = 0, then K(z) = ΔL(z) + (I − xxH)TN(z)(I − xxH)
for some T -palindromic pencil N, where ΔL is given in Theorem 3.5.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STRUCTURED BACKWARD ERRORS AND PSEUDOSPECTRA 341

Now we turn to H-Hermitian, H-skew-Hermitian, H-even, H-odd, and H-palin-
dromic pencils.

Theorem 3.6. Let S ∈ {H-Hermitian, H-skew-Hermitian} and L ∈ S be given
by L(z) = A+ zB. For (λ, x) ∈ C× Cn, set r := −L(λ)x. Then we have

ηS(λ, x,L) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2‖r‖22 − |xHr|2
‖(1, λ)‖2 ≤ √2 η(λ, x,L) if λ ∈ R,

√
|xHAx|2 + |xHBx|2 +

2‖r‖22 − 2|xHr|2
1 + |λ|2 , if λ ∈ C \ R.

In particular, we have ηS(λ, x,L) = ‖r‖2 =
√

2 η(λ, x,L), if λ = ±i.
When λ ∈ R, define

ΔA :=

{ 1
1+λ2

[
xrH + rxH − (

rHx
)
xxH

]
, if A = AH

1
1+λ2

[
rxH − xrH +

(
rHx

)
xxH

]
, if A = −AH

ΔB :=

⎧⎨
⎩

λ
1+λ2

[
xrH + rxH − (

rHx
)
xxH

]
, if B = BH

λ
1+λ2

[
rxH − xrH +

(
rHx

)
xxH

]
, if B = −BH

and consider the pencil ΔL(z) = ΔA + zΔB. Then ΔL ∈ S, L(λ)x + ΔL(λ)x = 0,
and |||ΔL||| = ηS(λ, x,L).

When λ ∈ C \ R, the H-Hermitian/H-skew-Hermitian pencil ΔL given in Theo-
rem 2.2 satisfies L(λ)x + ΔL(λ)x = 0 and |||ΔL||| = ηS(λ, x,L).

Proof. Suppose that L(z) = A+zB is H-Hermitian so that A = AH and B = BH .
By Theorem 2.2 there exists H-Hermitian pencil ΔL(z) = ΔA + zΔB such that
(ΔA+ λΔB)x = r. Again, choosing a unitary matrix Q := [x, Q1], we have

Δ̃A := QHΔAQ =
(
a11 aH1
a1 A1

)
,

Δ̃B := QHΔBQ =
(
b11 bH1
b1 B1

)
,

QHr =
(

xHr
QH1 r

)
,

where A1 = AH1 and B1 = BH1 are of size n− 1. This gives

(Δ̃A+ λΔ̃B)QHx =
(

xHr
QH1 r

)
⇒

(
a11 + λb11
a1 + λb1

)
=

(
xHr
QH1 r

)
.

The minimum norm solution of a1 + λb1 = QH1 r is given by

(a1 b1) = QH1 r

(
1
λ

)†
⇒ a1 =

1
1 + |λ|2Q

H
1 r, b1 =

λ

1 + |λ|2Q
H
1 r.

For the equation a11 + λb11 = xHr, two cases arise.
Case-I: When λ ∈ R, the minimum norm solution is given by

(a11 b11) = xHr

(
1
λ

)†
⇒ a11 =

1
1 + λ2

xHr ∈ R, b11 =
λ

1 + λ2
xHr ∈ R.
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Hence, we have

ΔA = Q

(
1

1+λ2 x
Hr 1

1+λ2

(
QH1 r

)H
1

1+λ2Q
H
1 r A1

)
QH ,

ΔB = Q

⎛
⎝ λ

1+λ2 x
Hr

(
λ

1+λ2Q
H
1 r

)H
λ

1+λ2Q
H
1 r B1

⎞
⎠QH .

Setting A1 = B1 = 0 and using the fact that Q1Q
H
1 = I − xxH , we have

ηS(x, λ,L) = |||ΔL||| =
√

2‖r‖22 − |xHr|2
‖(1, λ)‖2 .

Now simplifying the expressions for ΔA and ΔB, we have

ΔA =
1

1 + λ2
xxHrxH +

1
1 + λ2

[
xrHQ1Q

H
1 +Q1Q

H
1 rx

H
]
+Q1A1Q

H
1

=
1

1 + λ2

[
xrH + rxH − (

rHx
)
xxH

]
+Q1A1Q

H
1 ,

ΔB =
λ

1 + λ2
xxHrxH +

λ

1 + λ2

[
xrHQ1Q

H
1 +Q1Q

H
1 rx

H
]
+Q1B1Q

H
1

=
λ

1 + λ2

[
xrH + rxH − (

rHx
)
xxH

]
+Q1B1Q

H
1 .

Hence, the results follow.
Case-II: Suppose that λ ∈ C\R. Then by Theorem 2.1, we have xH(A+ΔA)x =

0 and xH(B + ΔB)x = 0. Hence, we have a11 = −xHAx and b11 = −xHBx.
Consequently,

ΔA = Q

⎛
⎝ −xHAx

(
1

1+|λ|2Q
H
1 r

)H
1

1+|λ|2Q
H
1 r A1

⎞
⎠QH ,

ΔB = Q

⎛
⎝ −xHBx

(
λ

1+|λ|2Q
H
1 r

)H
λ

1+|λ|2Q
H
1 r B1

⎞
⎠QH .

Setting A1 = B1 = 0, we obtain

ηS(λ, x,L) = |||ΔL||| =
√
|xHAx|2 + |xHBx|2 +

2‖(I − xxH)r‖22
1 + |λ|2 .

Hence, the result follows.
Now simplifying the expressions for ΔA and ΔB, we have

ΔA = −xxHAxxH +
1

1 + |λ|2
[
xrH

(
I − xxH) +

(
I − xxH) rxH ] +Q1A1Q

H
1 ,

ΔB = −xxHBxxH +
1

1 + |λ|2
[
λxrH

(
I − xxH) + λ

(
I − xxH) rxH] +Q1B1Q

H
1 .

Setting A1 = B1 = 0, we obtain the H-Hermitian pencil ΔL given in Theorem 2.2.
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The proof is similar for the case when L is H-skew-Hermitian.
Needless to mention that an analogue of Corollary 3.2 holds for H-Hermitian/H-

skew-Hermitian pencils.
Theorem 3.7. Let S ∈ {H-even, H-odd} and L ∈ S be given by L(z) = A+ zB.

For (λ, x) ∈ C× C
n, set r := −L(λ)x. Then we have

ηS(λ, x,L) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2‖r‖22 − |xHr|2
‖(1, λ)‖2 ≤ √2 η(λ, x,L) if λ ∈ iR,

√
|xHAx|2 + |xHBx|2 +

2‖r‖22 − 2|xHr|2
1 + |λ|2 , if λ ∈ C \ iR.

In particular, we have ηS(λ, x,L) = ‖r‖2 =
√

2 η(λ, x,L), if λ = ±1.
When λ ∈ iR, define

ΔA :=

⎧⎨
⎩

1
1+|λ|2

[
xrH + rxH − (

rHx
)
xxH

]
, if A = AH

1
1+|λ|2

[
rxH − xrH +

(
rHx

)
xxH

]
, if A = −AH

ΔB :=

⎧⎨
⎩

−λ
1+|λ|2

[
rxH − xrH +

(
rHx

)
xxH

]
, if B = BH

−λ
1+|λ|2

[
rxH + xrH − (

rHx
)
xxH

]
, if B = −BH

and consider the pencil ΔL(z) = ΔA + zΔB. Then ΔL ∈ S, L(λ)x + ΔL(λ)x = 0,
and |||ΔL||| = ηS(λ, x,L).

When λ ∈ C \ iR, the H-even/H-odd pencil ΔL given in Theorem 2.2 satisfies
L(λ)x + ΔL(λ)x = 0 and |||ΔL||| = ηS(λ, x,L).

Proof. First, suppose that L(z) = A + zB is H even. Then A = AH and
B = −BH . By Theorem 2.2 there exists H-even pencil ΔL(z) = ΔA + zΔB such
that ΔL(λ)x = r. Now choosing a unitary matrix Q := [x,Q1] and noting that
ΔA = ΔAH , ΔB = −ΔBH , we have

ΔA := Q

(
a11 aH1
a1 A1

)
QH and ΔB = Q

(
b11 bH1
−b1 B1

)
QH ,

where A1 = AH1 and B1 = −BH1 are matrices of size n − 1. Then ΔL(λ)x = r gives(
a11 + λb11
a1 − λb1

)
=

(
xHr

QH
1 r

)
. The minimum norm solution of a1 − λb1 = QH1 r is given by

(a1 b1) = QH1 r

(
1
−λ

)†
⇒ a1 =

1
1 + |λ|2Q

H
1 r, b1 = − λ

1 + |λ|2Q
H
1 r.

For the solution of a11 + λb11 = xHr two cases arise. When λ ∈ iR, the minimum
norm solution is given by

(a11 b11) = xHr

(
1
λ

)†
⇒ a11 =

1
1 + |λ|2 x

Hr ∈ R, b11 =
λ

1 + |λ|2 x
Hr ∈ iR.

When λ ∈ C \ iR, by Theorem 2.1, xH(A + ΔA)x = 0 = xH(B + ΔB)x ⇒ a11 =
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−xHAx and b11 = −xHBx. Consequently, we have

ΔA = Q

⎛
⎝ 1

1+|λ|2x
Hr

(
1

1+|λ|2Q
H
1 r

)H
1

1+|λ|2Q
H
1 r A1

⎞
⎠QH ,

ΔB = Q

⎛
⎝ λ

1+|λ|2x
Hr

(
− λ

1+|λ|2Q
H
1 r

)H
λ

1+|λ|2Q
H
1 r B1

⎞
⎠QH

when λ ∈ iR and

ΔA = Q

⎛
⎝ −xHAx

(
1

1+|λ|2Q
H
1 r

)H
1

1+|λ|2Q
H
1 r A1

⎞
⎠QH ,

ΔB = Q

⎛
⎝ −xHBx

(
− λ

1+|λ|2Q
H
1 r

)H
λ

1+|λ|2Q
H
1 r B1

⎞
⎠QH

when λ ∈ C \ iR. Hence, the desired results follow. Finally, reversing the role of A
and B we obtain the results for the case when L(z) = A+ zB is H-odd.

We have the following result for H-palindromic pencils.
Theorem 3.8. Let S be the space of H-palindromic pencils and L ∈ S be given

by L(z) = A+ zAH . Let (λ, x) ∈ C× Cn and r := −L(λ)x. Then we have

ηS(λ, x,L) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

√
|xHAx|2 +

‖r‖22 − |xHr|2
1 + |λ|2 if |λ| �= 1,

√
‖r‖22 − 1

2 |xHr|2, if |λ| = 1.

Now define

ΔA :=

{
1

1+|λ|2
[
rxH + λxrH

(
I − xxH)] , if |λ| = 1,

−xxHAxxH + 1
1+|λ|2

[
λxrH

(
I − xxH) +

(
I − xxH) rxH] , if |λ| �= 1,

and consider ΔL(z) := ΔA + z(ΔA)H . Then L(λ)x + ΔL(λ)x = 0 and |||ΔL||| =
ηS(λ, x,L).

Proof. Let Q := [x, Q1] be unitary. Then Δ̃A := QHΔAQ =
(
a11 aH

1
b1 A1

)
and

QHr =
(
xHr

QH
1 r

)
. Hence, ΔL(λ)x = r gives

(
λaH

11 + a11
λa1 + b1

)
=

(
xHr

QH
1 r

)
. If |λ| �= 1, then

by Theorem 2.1, we have xH(ΔA + A)x = 0 ⇒ xHΔAx = −xHAx. Hence, we have
a11 = −xHAx. On the other hand, when |λ| = 1, the minimum norm solution is given
by

(a11 a11) = xHr

(
λ
1

)†
=

(
λxHr

1 + |λ|2
xHr

1 + |λ|2
)
.

Note that when |λ| = 1 we have xHr = λxHr. Next, the minimum solution of a1λ+

b1 = QH1 r is given by (a1, b1) = QH1 r
(
λ
1

)†
=

(
λQH

1 r

1+|λ|2
QH

1 r

1+|λ|2

)
. Consequently, when
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|λ| �= 1, we have

ΔA = Q

(
−xHAx

(
λQH

1 r

1+|λ|2

)H

QH
1 r

1+|λ|2 A1

)
QH .

Setting A1 = 0, we obtain

ηS(λ, x,L) = |||ΔL|||=
√

2|xHAx|2 +
2‖[I − xxH ]r‖22

1 + |λ|2 =
√

2

√
|xHAx|2 +

‖r‖22 − |rHx|2
1 + |λ|2 .

Using the fact that Q1Q
H
1 = I − xxH , we have

ΔA = −xxHAxxH +
1

1 + |λ|2
[
λxrH

(
I − xxH) +

(
I − xxH) rxH ] +Q1A1Q

H
1 .

Setting A1 = 0, the result follows.
For the case when |λ| = 1, we have

ΔA = Q

⎛
⎜⎝

xHr
1+|λ|2

(
λQH

1 r
1+|λ|2

)H
QH

1 r
1+|λ|2 A1

⎞
⎟⎠QH .

Again, setting A1 = 0 we obtain

ηS(λ, x,L) = |||ΔL||| =
√
‖r‖22 −

1
2
|xHr|2.

Since Q1Q
H
1 = (I − xxH), simplifying the expression for ΔA, we obtain

ΔA :=
1

1 + |λ|2
[
rxH + λxrH

(
I − xxH)] +Q1A1Q

H
1 .

Hence, the proof.
Remark 3.9. Let (λ, x) ∈ C × Cn with xHx = 1 and S ∈ {T -symmetric, T -

skew-symmetric, T -odd, T -even, T -palindromic, H-Hermitian, H-skew-Hermitian,
H-odd, H-even, H-palindromic}. For L ∈ S, consider the set

S(λ, x,L) := {K ∈ S : L(λ)x + K(λ)x = 0}.
Then S(λ, x,L) �= ∅ and there exists a unique ΔL ∈ S(λ, x,L) such that

min{|||K||| : K ∈ S(λ, x,L)} = |||ΔL||| = ηS(λ, x,L).

Further, each pencil in S(λ, x,L) is of the form ΔL + (I − xxH)∗ Z(I − xxH) for some
Z ∈ S, where ∗ is either the transpose or the conjugate transpose depending upon the
structure defined by S. In other words, we have S(λ, x,L) = ΔL + (I − xxH)∗ S (I −
xxH).

We mention that the results obtained above are easily extended to the case of
pencils having more general structures. Indeed, let M be a unitary matrix such that
MT = M or MT = −M. Consider the Jordan algebra J := {A ∈ Cn×n : M−1ATM =
A} and the Lie algebra L := {A ∈ Cn×n : M−1ATM = −A} associated with the
scalar product (x, y) �→ yTMx. Consider a pencil L(z) = A + zB, where A and B
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are in J and/or in L. Then the pencil ML given by ML(z) = MA + zMB is either
T -symmetric, T -skew-symmetric, T -even, or T -odd. Hence, replacing A,B, and r by
MA,MB, and Mr, respectively, in the above results, we obtain corresponding results
for the pencil L.

Similarly, when M is unitary and M = MH or M = −MH , we consider the
Jordan algebra J := {A ∈ Cn×n : M−1AHM = A} and the Lie algebra L := {A ∈
Cn×n : M−1AHM = −A} associated with the scalar product (x, y) �→ yHMx. Now,
let L(z) = A + zB be a pencil where A and B are in J and/or in L. Then the pencil
ML(z) = MA+ zMB is either H-Hermitian, H-skew-Hermitian, H-even, or H-odd.
Hence, replacing A,B, and r by MA,MB, and Mr, respectively, in the above results,
we obtain corresponding results for the pencil L. In particular, when M := J, where
J :=

(
0 I
−I 0

)
∈ C2n×2n, the Jordan algebra J consists of skew-Hamiltonian matrices

and the Lie algebra L consists of Hamiltonian matrices. So, for example, considering
the pencil L(z) := A+zB, where A is Hamiltonian and B is skew-Hamiltonian, we see
that the pencil JL(z) = JA+ zJB is H-even. Hence, extending the results obtained
for H-even pencil to the case of L, we have the following.

Theorem 3.10. Let S be the space of pencils of the form L(z) = A+ zB, where
A is Hamiltonian and B is skew-Hamiltonian. For (λ, x) ∈ C×Cn, set r := −L(λ)x.
Then we have

ηS(λ, x,L) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2‖r‖22 − |xHJr|2
‖(1, λ)‖2 ≤ √2 η(λ, x,L) if λ ∈ iR,

√
|xHJAx|2 + |xHJBx|2 +

2‖r‖22 − 2|xHJr|2
1 + |λ|2 , if λ ∈ C \ iR.

We mention that Remark 3.9 remains valid for structured pencils in S whose
coefficient matrices are elements of Jordan and/or Lie algebras associated with a
scalar product considered above. In such a case the ∗ in (I − xxH)∗ is the adjoint
induced by the scalar product that defines the Jordan and Lie algebras.

4. Spectral norm and structured backward errors. Considering Frobenius
norm on Cn×n, in the previous section, we have obtained structured backward error
of an approximate eigenpair. In this section, we derive structured backward errors
when Cn×n is equipped with the spectral norm. Recall that the norm of a pencil
L(z) = A+ zB as defined in (2.1) is then given by |||L||| := (‖A‖22 + ‖B‖22)1/2. Deriva-
tions of structured backward errors of approximate eigenpairs turn out to be much
more difficult when Cn×n is equipped with the spectral norm than in the case when
Cn×n is equipped with the Frobenius norm. We mention that for certain structures
(e.g., T -symmetric and T -skew-symmetric) it is indeed possible to use structured map-
ping theorems given in [18, 2] to derive structured backward errors of approximate
eigenpairs. However, for most structures (e.g., even, odd, palindromic, Hermitian,
skew-Hermitian), the structured mapping theorems are not of much help for deriving
structured backward errors. We overcome this difficulty by employing Davis–Kahan–
Weinberger solutions of norm preserving dilation problem for Hilbert space operators.

The Davis–Kahan–Weinberger (DKW, in short) solutions of norm-preserving di-
lations of matrices can be stated as follows (for a more general version of the DKW
theorem, see [9]).

Theorem 4.1 (Davis–Kahan–Weinberger, [9]). Let A,B,C satisfy
∥∥(A
B
)∥∥

2
= μ

and
∥∥(A C

)∥∥
2

= μ. Then there exists D such that
∥∥(A C
B D

)∥∥
2

= μ. Indeed, those D
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which have this property are exactly those of the form

D = −KAHL+ μ
(
I −KKH

)1/2
Z
(
I − LHL)1/2 ,

where KH := (μ2I − AHA)−1/2BH , L := (μ2I− AAH)−1/2C, and Z is an arbitrary
contraction, that is, ‖Z‖2 ≤ 1.

We now use the DKW theorem with Z = 0 and derive structured backward error
of an approximate eigenpair. Recall that for (λ, x) ∈ C×Cn, our standing assumption
is that xHx = 1.

Theorem 4.2. Let S ∈ {T -symmetric, T -skew-symmetric} and L ∈ S be given
by L(z) := A+ zB. Let (λ, x) ∈ C× Cn and r := −L(λ)x. Then we have

ηS(λ, x,L) =
‖r‖2
‖(1, λ)‖2 = η(λ, x,L).

Now define

ΔA :=

⎧⎪⎨
⎪⎩

1
1+|λ|2

[
xrT + rxH − (

rTx
)
xxH − xT r (I−xxT )rrT (I−xxH)

‖r‖2
2−|xT r|2

]
, if A = AT ,

− 1
1+|λ|2

[
xrT − rxH] , if A = −AT .

ΔB :=

⎧⎪⎨
⎪⎩

λ
1+|λ|2

[
xrT + rxH − (

rTx
)
xxH − xT r (I−xxT )rrT (I−xxH)

‖r‖2
2−|xT r|2

]
, if B = BT ,

− λ
1+|λ|2

[
xrT − rxH] , if B = −BT ,

and consider the pencil ΔL(z) := ΔA + zΔB. Then ΔL ∈ S, L(λ)x + ΔL(λ)x = 0,
and |||ΔL||| = ηS(λ, x,L).

Proof. Suppose that L is T -symmetric. Then from the proof of Theorem 3.1, we
have

ΔA = Q

⎛
⎝ xT r

1+|λ|2
1

1+|λ|2
(
QT1 r

)T
1

1+|λ|2
(
QT1 r

)
A1

⎞
⎠QH ,

ΔB = Q

⎛
⎝ λ xT r

1+|λ|2
λ

1+|λ|2
(
QT1 r

)T
λ

1+|λ|2
(
QT1 r

)
B1

⎞
⎠QH ,

such that ΔL(λ)x + L(λ)x = 0. Now, for μΔA := ‖r‖2
1+|λ|2 and μΔB := |λ| ‖r‖2

1+|λ|2 , by the

DKW Theorem 4.1, we haveA1 =− xT r (QT
1 r)(Q

T
1 r)

T

(1+|λ|2) (‖r‖2
2−|xT r|2) and B1 =− λ xT r (QT

1 r)(Q
T
1 r)

T

(1+|λ|2) (‖r‖2
2−|xT r|2) .

This gives ηS(λ, x,L) = (‖ΔA‖22 + ‖ΔB‖22)1/2 = ‖r‖2
‖(1,λ)‖2

. Simplifying expressions for
ΔA and ΔB, we obtain the desired results.

When L is T -skew-symmetric, from the proof of Theorem 3.3, we have

ΔA = Q

(
0 − (QT

1 r)
T

1+|λ|2
1

1+|λ|2Q
T
1 r A1

)
QH , ΔB = Q

⎛
⎝ 0 −λ(Q

T
1 r)

T

1+|λ|2
λ

1+|λ|2Q
T
1 r B1

⎞
⎠QH ,

such that ΔL(λ)x + L(λ)x = 0. Now, for μΔA := ‖r‖2
1+|λ|2 and μΔB := |λ| ‖r‖2

1+|λ|2 , by the
DKW Theorem 4.1, we obtain A1 = 0 = B1. Consequently, we have ηS(λ, x,L) =
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(‖ΔA‖22 + ‖ΔB‖22)1/2 = ‖r‖2/‖(1, λ)‖2. Simplifying the expressions for ΔA and ΔB,
we obtain the desired results.

Remark 4.3. If |xT r| = ‖r‖2, then ‖QT1 r‖2 = 0. In such a case, considering
A1 = 0 = B1 we obtain the desired results.

Next, we consider T -even and T -odd pencils. Recall that for z ∈ C, sign(z) :=
z/|z| when z �= 0 and sign(z) := 1 when z = 0.

Theorem 4.4. Let S ∈ {T -even, T -odd} and L ∈ S be given by L(z) := A+ zB.
Let (λ, x) ∈ C× Cn and r := −L(λ)x. Then we have

ηS(λ, x,L)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
|xTAx|2 +

‖r‖22 − |xT r|2
1 + |λ|2 =

√‖r‖22 + |λ|2|xT r|2
‖(1, λ)‖2 , if L is T -even,

√
|xTBx|2 + ‖r‖2

2−|xT r|2
1+|λ|2 =

√‖r‖22 + |λ|−2 |xT r|2
‖(1, λ)‖2 , if L is T -odd, λ �= 0,

η(λ, x,L), if L is T -odd, λ = 0.

Now, define

ΔA :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− xxTAxxH + 1
1+|λ|2

[
xrT + rxH − 2

(
xT r

)
xxH

]
+

xTAx (I−xxT )rrT (I−xxH)
‖r‖2

2−|xT r|2 , if A = AT ,

1
1+|λ|2

[
rxH − xrT ] , if A = −AT .

ΔB :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− xxTBxxH + λ
1+|λ|2

[
xrT + rxH − 2

(
xT r

)
xxH

]
− sign(λ)2 xTBx (I−xxT )rrT (I−xxH)

‖r‖2
2−|xT r|2 , if B = BT ,

− λ
1+|λ|2

[
xrT − rxH] , if B = −BT ,

and consider the pencil ΔL(z) := ΔA + zΔB. Then ΔL ∈ S, L(λ)x + ΔL(λ)x = 0
and |||ΔL||| = ηS(λ, x,L).

Proof. Suppose that L is T -even. Then from the proof of Theorem 3.4, we have

ΔA = Q

⎛
⎝−xTAx (QT

1 r)
T

1+|λ|2
QT

1 r
1+|λ|2 A1

⎞
⎠QH , ΔB = Q

(
0 − λ

1+|λ|2
(
QT1 r

)T
λ

1+|λ|2
(
QT1 r

)
B1

)
QH ,

such that ΔL(λ)x + L(λ)x = 0. Now, for

μΔA :=

√
|xTAx|2 +

‖r‖22 − |xT r|2
(1 + |λ|2)2 and μΔB :=

√
|λ|2(‖r‖22 − |xT r|2)

(1 + |λ|2)2

by the DKW Theorem 4.1, we have A1 = xTAx
‖r‖2

2−|xT r|2 (QT1 r)(Q
T
1 r)

T and B1 = 0. This
gives

ηS(λ, x,L) =

√
|xTAx|2 +

‖r‖22 − |xT r|2
1 + |λ|2 =

√‖r‖22 + |λ|2|xT r|2
‖(1, λ)‖2 .

Simplifying the expressions for ΔA and ΔB, we obtain the desired results. When L
is T -odd, the results follow by interchanging the role of A and B.
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It follows that for a T -even pencil we have ηS(λ, x,L) ≤ ‖(1, λ)‖2 η(λ, x,L) whereas
for a T -odd pencil we have ηS(λ, x,L) ≤ ‖(1, λ−1)‖2 η(λ, x,L) when λ �= 0.

Theorem 4.5. Let S ∈ {H-Hermitian, H-skew-Hermitian} and L ∈ S be given
by L(z) := A+ zB. Let (λ, x) ∈ C× Cn and r := −L(λ)x. Then we have

ηS(λ, x,L) =

⎧⎪⎪⎨
⎪⎪⎩

η(λ, x,L), if λ ∈ R,√
|xHAx|2 + |xHBx|2 +

‖r‖22 − |xHr|2
1 + |λ|2 , if λ ∈ C \ R.

When λ ∈ R, define

ΔA :=

⎧⎪⎨
⎪⎩

1
1+λ2

[
xrH + rxH − (

rHx
)
xxH − xHr (I−xxH)rrH(I−xxH)

‖r‖2
2−|xHr|2

]
, if A = AH ,

1
1+λ2 [rxH − xrH + (rHx)xxH + rHx(I−xxH)rrH(I−xxH)

‖r‖2
2−|xHr|2 ], if A = −AH .

ΔB :=

⎧⎪⎪⎨
⎪⎪⎩

λ
1+λ2

[
xrH + rxH − (

rHx
)
xxH − xHr (I−xxH)rrH(I−xxH)

‖r‖2
2−|xHr|2

]
, if B = BH ,

λ
1+λ2

[
rxH − xrH +

(
rHx

)
xxH +

rHx (I−xxH)rrH(I−xxH)
‖r‖2

2−|xHr|2

]
, if B = −BH .

When λ ∈ C \ R, define

ΔA :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− xxHAxxH + 1
1+|λ|2

[
xrH

(
I − xxH) +

(
I − xxH) rxH ]

+
xHAx (I−xxH)rrH(I−xxH)

‖r‖2
2−|xHr|2 , if A = AH ,

− xxHAxxH + 1
1+|λ|2

[(
I − xxH) rxH − xrH (

I − xxH)]
+

xHAx(I−xxH)rrH(I−xxH)
‖r‖2

2−|xHr|2 , if A = −AH .

ΔB :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− xxHBxxH + 1
1+|λ|2

[
λxrH

(
I − xxH) + λ

(
I − xxH) rxH]

+
xHBx (I−xxH)rrH(I−xxH)

‖r‖2
2−|xHr|2 , if B = BH ,

− xxHBxxH − λ
1+|λ|2 xr

H
(
I − xxH) + λ

1+|λ|2
(
I − xxH) rxH

+
xHBx(I−xxH)rrH(I−xxH)

‖r‖2
2−|xHr|2 , if B = −BH .

Consider ΔL(z) := ΔA + zΔB. Then ΔL ∈ S, L(λ)x + ΔL(λ)x = 0, and |||ΔL||| =
ηS(λ, x,L).

Proof. First, suppose that L is H-Hermitian. Assume that λ ∈ R. Then xHr ∈ R.
Now from the proof of Theorem 3.6, we have

ΔA = Q

(
1

1+λ2 x
Hr 1

1+λ2

(
QH1 r

)H
1

1+λ2Q
H
1 r A1

)
QH

and

ΔB = Q

(
λ

1+λ2 x
Hr λ

1+λ2

(
QH1 r

)H
λ

1+λ2Q
H
1 r B1

)
QH
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such that ΔL(λ)x + L(λ)x = 0. For μΔA := ‖r‖2
1+λ2 and μΔB := |λ| ‖r‖2

1+λ2 by the DKW

Theorem 4.1, we have A1 = − xHr (QH
1 r)(Q

H
1 r)

H

(1+λ2) (‖r‖2
2−|xHr|2) , B1 = − λ xHr (QH

1 r)(Q
H
1 r)

H

(1+λ2) (‖r‖2
2−|xHr|2) . This

gives ηS(λ, x,L) = (‖ΔA‖22 + ‖ΔB‖22)1/2 = ‖r‖2
‖(1,λ)‖2

. Now simplifying the expressions
for ΔA and ΔB, we obtain the desired results.

Next, suppose that λ ∈ C\R. Then again from the proof of Theorem 3.6, we have

ΔA = Q

(
−xHAx 1

1+|λ|2
(
QH1 r

)H
1

1+|λ|2Q
H
1 r A1

)
QH ,

ΔB = Q

(
−xHBx λ

1+|λ|2
(
QH1 r

)H
λ

1+|λ|2Q
H
1 r B1

)
QH .

For, μΔA :=
√
|xHAx|2 + ‖r‖2

2−|xHr|2
(1+|λ|2)2 , μΔB :=

√
|xHBx|2 + |λ|2(‖r‖2

2−|xHr|2)
(1+|λ|2)2 , by the

DKW Theorem 4.1, we have

A1 =
xHAx

‖r‖22 − |xHr|2
(
QH1 r

) (
QH1 r

)H
and B1 =

xHBx

‖r‖22 − |xT r|2
(
QH1 r

) (
QH1 r

)H
.

Hence, we have ηS(λ, x,L) =
√
|xHAx|2 + |xHBx|2 + ‖r‖2

2−|xHr|2
1+|λ|2 . Now, simplifying

the expressions for ΔA and ΔB, we obtain the desired results. The proof is similar
for the case when L is H-skew-Hermitian.

We mention that when QH1 r = 0, the desired results follow by considering A1 =
0 = B1.

Theorem 4.6. Let S ∈ {H-even, H-odd} and L ∈ S be given by L(z) := A+ zB.
Let (λ, x) ∈ C× Cn and r := −L(λ)x. Then we have

ηS(λ, x,L) =

⎧⎪⎨
⎪⎩

η(λ, x,L), if λ ∈ iR,√
|xHAx|2 + |xHBx|2 +

‖r‖22 − |xHr|2
1 + |λ|2 , if λ ∈ C \ iR.

When λ ∈ iR, define

ΔA :=

⎧⎪⎪⎨
⎪⎪⎩

1
1+|λ|2

[
xrH + rxH − (

rHx
)
xxH − xHr (I−xxH)rrH(I−xxH)

‖r‖2
2−|xHr|2

]
, if A = AH ,

1
1+|λ|2

[
rxH − xrH +

(
rHx

)
xxH +

rHx(I−xxH)rrH(I−xxH)
‖r‖2

2−|xHr|2

]
, if A = −AH .

ΔB :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1+|λ|2

[
λrxH + λxrH − λ (rHx)xxH +

λxHr (I−xxH)rrH(I−xxH)
‖r‖2

2−|xHr|2

]
,

if B = BH ,

1
1+|λ|2

[
λxxHrxH − λxrH (

I − xxH) + λ
(
I − xxH) rxH

+
λrHx(I−xxH)rrH(I−xxH)

‖r‖2
2−|xHr|2

]
, if B = −BH .
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When λ ∈ C \ iR, define

ΔA :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− xxHAxxH + 1
1+|λ|2

[
xrH

(
I − xxH) +

(
I − xxH) rxH]

+
xHAx (I−xxH)rrH(I−xxH)

‖r‖2
2−|xHr|2 , if A = AH ,

− xxHAxxH + 1
1+|λ|2

[(
I − xxH) rxH − xrH (

I − xxH)]
+
xHAx(I−xxH)rrH(I−xxH)

‖r‖2
2−|xHr|2 , if A = −AH .

ΔB :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− xxHBxxH + 1
1+|λ|2

[
λxrH

(
I − xxH) + λ

(
I − xxH) rxH]

+
xHBx (I−xxH)rrH(I−xxH)

‖r‖2
2−|xHr|2 , if B = BH ,

− xxHBxxH − λxrH(I−xxH)
1+|λ|2 +

λ(I−xxH)rxH

1+|λ|2 +
xHBx(I−xxH)rrH(I−xxH)

‖r‖2
2−|xHr|2 ,

if B = −BH .

Consider ΔL(z) := ΔA + zΔB. Then ΔL ∈ S, L(λ)x + ΔL(λ)x = 0, and |||ΔL||| =
ηS(λ, x,L).

Proof. First, suppose that L is H-even. Next, assume that λ ∈ iR. Then it follows
that xHr ∈ R. Now from the proof of Theorem 3.7, we have

ΔA = Q

(
1

1+|λ|2x
Hr 1

1+|λ|2 (QH1 r)
H

1
1+|λ|2Q

H
1 r A1

)
QH ,

ΔB := Q

(
λ

1+|λ|2x
Hr − λ

1+|λ|2 (QH1 r)
H

λ
1+|λ|2Q

H
1 r B1

)
QH

such that ΔL(λ)x + L(λ)x = 0. For μΔA := ‖r‖2
1+|λ|2 , μΔB := |λ| ‖r‖2

1+|λ|2 , by the DKW
Theorem 4.1 we have

A1 = − xHr
(
QH1 r

) (
QH1 r

)H
(1 + |λ|2) (‖r‖22 − |xHr|2)

and B1 =
λ xHr

(
QH1 r

) (
QH1 r

)H
(1 + |λ|2) (‖r‖22 − |xHr|2)

.

This gives ηS(λ, x,L) = (‖ΔA‖22 + ‖ΔB‖22)1/2 = ‖r‖2
‖(1,λ)‖2

. Simplifying expressions for
ΔA and ΔB, we obtain the desired result.

Now suppose that λ ∈ C \ iR. The again from the proof of Theorem 3.7, we have

ΔA = Q

(
−xHAx 1

1+|λ|2
(
QH1 r

)H
1

1+|λ|2Q
H
1 r A1

)
QH ,

ΔB := Q

(
−xHBx − λ

1+|λ|2
(
QH1 r

)H
λ

1+|λ|2Q
H
1 r B1

)
QH .

For μΔA =
√
|xHAx|2 + ‖r‖2

2−|xHr|2
(1+|λ|2)2 and μΔB =

√
|xHBx|2 + |λ|2(‖r‖2

2−|xHr|2)
(1+|λ|2)2 , by the

DKW Theorem 4.1, we have

A1 =
xHAx

‖r‖22 − |xHr|2
(
QH1 r

) (
QH1 r

)H
and B1 =

xHBx

‖r‖22 − |xT r|2
(
QH1 r

) (
QH1 r

)H
.
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Consequently, we have ηS(λ, x,L) =
√
|xHAx|2 + |xHBx|2 + ‖r‖2

2−|xHr|2
1+|λ|2 . Now, sim-

plifying the expressions for ΔA and ΔB, we obtain the desired results.
When L is H-odd, the desired results follow by interchanging the role of A and

B.
As before, the above results are easily extended to the case of general structured

pencils where the coefficient matrices are elements of Jordan and/or Lie algebras. In
particular, for the pencil L(z) := A + zB, where A is Hamiltonian and B is skew-
Hamiltonian, we have the following result.

Theorem 4.7. Let S be the space of pencils of the form L(z) = A + zB, where
A is Hamiltonian and B is skew-Hamiltonian. Let L ∈ S and (λ, x) ∈ C × Cn. Set
r := −L(λ)x. Then we have

ηS(λ, x,L) =

⎧⎪⎨
⎪⎩
η(λ, x,L), if λ ∈ iR√
|xHJAx|2 + |xHJBx|2 +

‖r‖22 − |xHJr|2
1 + |λ|2 , if λ ∈ C \ iR.

Now we consider palindromic pencils.
Theorem 4.8. Let S be the space of T -palindromic pencils and L ∈ S be given

by L(z) := A+ zAT . Let (λ, x) ∈ C× Cn and r := −L(λ)x. Then we have

ηS(λ, x,L) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
2

√
|xTAx|2 +

|λ|2 (‖r‖22 − |xT r|2)
(1 + |λ|2)2 , if |λ| > 1,

√
2

√
|xTAx|2 +

‖r‖22 − |xT r|2
(1 + |λ|2)2 , if |λ| ≤ 1 and λ �= ±1,

η(λ, x,L), if λ = ±1.

Now define

ΔA :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−xxTAxxH + 1
1+|λ|2

[
λxrT

(
I − xxH) +

(
I − xxT ) rxH]

+
λ xTAx (I−xxT )rrT (I−xxH)

|λ|2 (‖r‖2
2−|xT r|2) , if |λ| > 1,

−xxTAxxH + 1
1+|λ|2

[
λxrT

(
I − xxH) +

(
I − xxT ) rxH]

+
λ xTAx (I−xxT )rrT (I−xxH)

‖r‖2
2−|xT r|2 , if |λ| ≤ 1 and λ �= −1,

1
1+|λ|2

[
λxrT

(
I− xxH) +

(
I− xxT ) rxH] , if λ = −1.

Consider the pencil ΔL(z) := ΔA+z(ΔA)T . Then ΔL ∈ S, L(λ)x+ΔL(λ)x = 0 and
|||ΔL||| = ηS(λ, x,L).

Proof. Suppose that λ �= −1. Then from the proof of Theorem 3.5, we have

ΔA = Q

(
−xTAx λ

1+|λ|2
(
QT1 r

)T
1

1+|λ|2Q
T
1 r A1

)
QH

such that ΔL(λ)x + L(λ)x = 0. Now for

μΔA :=

⎧⎪⎨
⎪⎩
√
|xTAx|2 + |λ|2(‖r‖2

2−|xT r|2)
(1+|λ|2)2 , if |λ| > 1,√

|xTAx|2 + ‖r‖2
2−|xT r|2

(1+|λ|2)2 , if |λ| ≤ 1,
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by the DKW Theorem 4.1, we have

A1 =

⎧⎨
⎩

λ xTAx
|λ|2 (‖r‖2

2−|xT r|2)Q
T
1 r

(
QT1 r

)T
, if |λ| > 1,

λ xTAx
‖r‖2

2−|xT r|2Q
T
1 r

(
QT1 r

)T
, if |λ| ≤ 1.

Consequently, we have

ηS(λ, x,L) =

⎧⎪⎨
⎪⎩
√

2
√
|xTAx|2 + |λ|2 (‖r‖2

2−|xT r|2)
(1+|λ|2)2 , if |λ| > 1,

√
2
√
|xTAx|2 + ‖r‖2

2−|xT r|2
(1+|λ|2)2 , if |λ| ≤ 1.

Now simplifying the expression for ΔA, we obtain the desired results.
Next, suppose that λ = −1. Then again from the proof of Theorem 3.5, we have

ΔA = Q

(
0 λ

1+|λ|2
(
QT1 r

)T
1

1+|λ|2Q
T
1 r A1

)
QH . For μΔA :=

‖r‖2
1 + |λ|2 ,

by the DKW Theorem 4.1, we have A1 = 0. Hence, ηS(λ, x,L) = 1√
2
‖r‖2. Simplifying

the expression for ΔA, we obtain the desired result.
For H-palindromic pencils we have the following.
Theorem 4.9. Let S be the space of H-palindromic pencils and L ∈ S be given

by L(z) := A+ zAH . Let (λ, x) ∈ C× C
n and r := −L(λ)x. Then we have

ηS(λ, x,L) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
2

√
|xHAx|2 +

|λ|2 (‖r‖22 − |xHr|2)
(1 + |λ|2)2 , if |λ| > 1,

√
2

√
|xHAx|2 +

‖r‖22 − |xHr|2
(1 + |λ|2)2 , if |λ| < 1,

η(λ, x,L), if |λ| = 1.

Now define

ΔA :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−xxHAxxH + 1
1+|λ|2

[
λxrH

(
I − xxH) +

(
I − xxH) rxH ]

+
xHAx (I−xxH)rrH(I−xxH)

λ (‖r‖2
2−|xHr|2) , if |λ| > 1,

−xxHAxxH + 1
1+|λ|2

[
λxrH

(
I − xxH) +

(
I − xxH) rxH ]

+
λ xHAx (I−xxH)rrH(I−xxH)

‖r‖2
2−|xHr|2 , if |λ| < 1,

1
1+|λ|2

[
rxH + λxrH

(
I− xxH)− xHr (I−xxH)rrH(I−xxH)

(‖r‖2
2−|xHr|2)

]
, if |λ| = 1,

and consider the pencil ΔL(z) := ΔA+ z(ΔA)H . Then ΔL ∈ S, L(λ)x+ΔL(λ)x = 0
and |||ΔL||| = ηS(λ, x,L).

Proof. First, suppose that |λ| �= 1. Then from the proof of Theorem 3.8, we have

ΔA = Q

(
−xHAx λ

1+|λ|2
(
QH1 r

)H
1

1+|λ|2Q
H
1 r A1

)
QH

such that ΔL(λ)x + L(λ)x = 0. In this case, we have

μΔA =

⎧⎪⎨
⎪⎩
√
|xHAx|2 + |λ|2(‖r‖2

2−|xHr|2)
(1+|λ|2)2 , if |λ| > 1,√

|xHAx|2 + ‖r‖2
2−|xHr|2

(1+|λ|2)2 , if |λ| < 1.
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Hence, by the DKW Theorem 4.1, we have

A1 =

⎧⎨
⎩

λ xHAx
|λ|2 (‖r‖2

2−|xHr|2)Q
H
1 r(QH1 r)H , if |λ| > 1,

λ xHAx
‖r‖2

2−|xHr|2Q
H
1 r(Q

H
1 r)

H , if |λ| < 1.

This gives

ηS(λ, x,L) =

⎧⎪⎨
⎪⎩
√

2
√
|xHAx|2 + |λ|2 (‖r‖2

2−|xHr|2)
(1+|λ|2)2 , if |λ| > 1,

√
2
√
|xHAx|2 + ‖r‖2

2−|xHr|2
(1+|λ|2)2 , if |λ| < 1.

Simplifying the expression for ΔA, we obtain the desired result.
When |λ| = 1, again from the proof of Theorem 3.8, we have

ΔA = Q

(
xHr

1+|λ|2
λ

1+|λ|2
(
QH1 r

)H
1

1+|λ|2Q
H
1 r A1

)
QH .

Now, we have μΔA = ‖r‖2
1+|λ|2 . Hence, by the DKW Theorem 4.1, we have

A1 = −x
Hr

(
I − xxH) rrH (

I − xxH)
(1 + |λ|2)(‖r‖22 − |xHr|2)

.

Consequently, we have ηS(λ, x,L) = ‖r‖2√
2
. Simplifying the expression for ΔA, we

obtain the desired result.
Remark 4.10. Let (λ, x) ∈ C×Cn with xHx = 1 and S ∈ {T -symmetric, T -skew-

symmetric, T -odd, T -even, T -palindromic, H-Hermitian, H-skew-Hermitian, H-odd,
H-even, H-palindromic}. For L ∈ S, consider the set

S(λ, x,L) := {K ∈ S : L(λ)x + K(λ)x = 0}.

Then S(λ, x,L) �= ∅ and min{|||K||| : K ∈ S(λ, x,L)} = ηS(λ, x,L). Further,

Sopt(λ, x,L) := {ΔL ∈ S(x, λ,L) : |||ΔL||| = ηS(λ, x,L)}

is an infinite set and is characterized by the DKW Theorem 4.1 by taking into account
the nonzero contractions. Let ΔL ∈ Sopt(λ, x,L). Then each pencil in S(λ, x,L) is of
the form ΔL +(I −xxH)∗ Z(I −xxH) for some Z ∈ S, where ∗ is either the transpose
or the conjugate transpose depending upon the structure defined by S. In other words,
we have

S(λ, x,L) = ΔL +
(
I − xxH)∗ S

(
I − xxH) .

Needless to mention that Remark 4.10 remains valid for structured pencils in S

whose coefficient matrices are elements of Jordan and/or Lie algebras associated with
a scalar product considered in the previous section. In such a case the ∗ in (I−xxH)∗

is the adjoint induced by the scalar product that defines the Jordan and Lie algebras.
We now illustrate various structured and unstructured backward errors by nu-

merical examples. We use matlab.7.0 for our computation. We generate A and B as
follows:
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>> randn(‘state’,15), A = randn(50)+ i*randn(50); A = A ± A∗;
>> randn(‘state’,25), B = randn(50)+i*randn(50); B = B ± B∗;

For T -palindromic/H-palindromic pencils, we generate A and B by
>> randn(‘state’,15), A = randn(50)+ i*randn(50); B = A∗;

Here A∗ = AT or A∗ = AH . Finally, we compute (λ, x) by
>> [V,D] = eig(A,B); λ = -D(2,2); x = V(:,2)/norm(V(:,2));

We denote by ηS

F (λ, x,L) and ηS
2(λ, x,L) the backward error ηS(λ, x,L) when Cn×n

is equipped with the Frobenius norm and the spectral norm, respectively. Note that
η(λ, x,L) is the same for the spectral and the Frobenius norms. Then we have the
following.

S η(λ, x, L) ηS

F (λ, x, L) ηS
2(λ, x, L)

T -symm 1.387705737323579e−014 1.959539856593202e−014 1.387705737323579e−014

T -skew-symm 1.796046101865378e−014 2.539992755905347e−014 1.796046101865378e−014

T -even 2.219610496439476e−014 3.211055813711074e−014 2.324926535413804e−014

T -odd 1.559070464273151e−014 2.204626223816091e−014 1.559075824083717e−014

T -palindromic 1.068704043320177e−014 1.512088705618463e−014 1.487010794022381e−014

H-Herm 2.076731533185186e−014 2.947235222707197e−014 2.106896507205170e−014

H-skew-Herm 1.714743310005108e−014 2.489567700503872e−014 1.811820338752170e−014

H-even 1.590165856939442e−014 2.299115486213681e−014 1.663718384482337e−014

H-odd 2.343032834027323e−014 3.472518481940936e−014 2.566511276851151e−014

H-palindromic 9.161344100487524e−015 1.298942035829892e−014 1.296310627878570e−014

Note that structured backward errors are bigger than or equal to unstructured
backward errors but they are marginally so. On the other hand, structured condition
numbers are less than or equal to unstructured condition numbers [13, 6]. Conse-
quently, structured backward errors when combined with structured condition num-
bers provide almost the same approximate upper bounds on the errors in the computed
eigenelements as do their unstructured counterparts. We mention that the matlab

eig command does not ensure spectral symmetry in the computed eigenvalues.

5. Structured pseudospectra of structured pencils. Let L ∈ An×n be
a regular pencil. For λ ∈ C, the backward error of λ as an approximate eigen-
value of L is given by η(λ,L) := min{η(λ, x,L) : x ∈ Cn and ‖x‖2 = 1}. Since
η(λ, x,L) = ‖L(λ)x‖2/‖(1, λ)‖2, it follows that for the spectral norm as well as for
the Frobenius norm on Cn×n, we have η(λ,L) := σmin(L(λ))/‖(1, λ)‖2. Similarly, we
define structured backward error of an approximate eigenvalue λ of L ∈ S by

ηS(λ,L) := min
{
ηS(λ, x,L) : x ∈ C

n and ‖x‖2 = 1
}
.

Note that backward errors of approximate eigenvalues and pseudospectra of a pencil
are closely related. For ε > 0, the unstructured ε-pseudospectrum of L, denoted by
Λε(L), is given by [3]

Λε(L) =
⋃

|||ΔL|||≤ε
{Λ(L + ΔL) : ΔL ∈ A

n×n}.

Obviously, we have Λε(L) = {z ∈ C : η(z,L) ≤ ε}, assuming, for simplicity, that
∞ /∈ Λε(L). For the sake of simplicity, for rest of this section, we make an implicit
assumption that ∞ /∈ Λε(L). We observe the following.
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• Since η(λ,L) is the same for the spectral norm and the Frobenius norm on
Cn×n, it follows that Λε(L) is the same for the spectral and the Frobenius
norms.

Similarly, when L ∈ S, we define the structured ε-pseudospectrum of L, denoted by
ΛS
ε(L), by

ΛS

ε(L) :=
⋃

|||ΔL|||≤ε
{Λ(L + ΔL) : ΔL ∈ S}.

Then it follows that ΛS
ε(L) = {z ∈ C : ηS(λ,L) ≤ ε}.

Theorem 5.1. Let S ∈ {T -symmetric, T -skew-symmetric} and L ∈ S. Let λ ∈
C. Then for the spectral norm on C

n×n, we have ηS(λ,L) = η(λ,L) and ΛS
ε(L) =

Λε(L). For the Frobenius norm on Cn×n, we have ηS(λ,L) =
√

2 η(λ,L) and ΛS
ε(L) =

Λε/√2(L) when L is T -skew-symmetric, and ηS(λ,L) = η(λ,L) and ΛS
ε(L) = Λε(L)

when L is T -symmetric.
Proof. For the spectral norm, by Theorem 4.2, we have ηS(λ, x,L) = η(λ, x,L)

for all x. Consequently, we have ηS(λ,L) = η(λ,L). Hence, the result follows.
For the Frobenius norm, the result follows from Theorem 3.3 when L is T -skew-

symmetric. So, suppose that L is T -symmetric. Then L(λ) ∈ Cn×n is symmet-
ric. Consider the Takagi factorization L(λ) = UΣUT , where U is unitary and Σ
is a diagonal matrix containing singular values of L(λ) (appear in descending or-
der). Set σ := Σ(n, n) and u := U(:, n). Then we have L(λ)u = σu. Now define
ΔA := − σ uuT

1+|λ|2 ,ΔB := −λσ uuT

1+|λ|2 , and consider the pencil ΔL(z) = ΔA+ zΔB. Then
ΔL is T -symmetric and L(λ)u+ ΔL(λ)u = 0. Notice that, for the spectral norm and
the Frobenius norm on Cn×n, we have ηS(λ,L) ≤ |||ΔL||| = σ/‖(1, λ)‖2 = η(λ,L) and,
hence, Λε(L) = ΛS

ε(L). This completes the proof.
When L is T -symmetric, the above proof shows how to construct a T -symmetric

pencil ΔL such that λ ∈ Λ(L + ΔL) and |||ΔL||| = ηS(λ,L). When L is T -skew-
symmetric, using Takagi factorization of the complex skew-symmetric matrix L(λ),
one can construct a T -skew-symmetric pencil ΔL such that λ ∈ Λ(L + ΔL) and
|||ΔL||| = ηS(λ,L). Indeed, consider the Takagi factorization L(λ) = Udiag(d1, . . . , dm)
UT , where U is unitary, dj := ( 0 sj

−sj 0
)
, sj ∈ C is nonzero, and |sj | are singular values

of L(λ). Here the blocks dj appear in descending order of magnitude of |sj |. Note that
L(λ)U = Udiag(d1, . . . , dm). Let u := U(:, n− 1 : n). Then L(λ)u = udm = udmu

Tu.
Now define

ΔA := − udmu
T

1 + |λ|2 , ΔB := −λudmu
T

1 + |λ|2
and consider ΔL(z) := ΔA + zΔB. Then ΔL is T -skew-symmetric and L(λ)u +
ΔL(λ)u = 0. For the spectral norm on Cn×n, we have ηS(λ,L) = |||ΔL||| = σmin(L(λ))/
‖(1, λ)‖2 = η(λ,L) and for the Frobenius norm on Cn×n, we have ηS(λ,L) = |||ΔL||| =√

2 σmin(L(λ))/‖(1, λ)‖2 =
√

2 η(λ,L).
We denote the unit circle in C by T, that is, T := {z ∈ C : |z| = 1}. Then for

T -even and T -odd pencils we have the following.
Theorem 5.2. Let S ∈ {T -even, T -odd} and L ∈ S. Let λ ∈ T. Then for the

Frobenius norm on Cn×n, we have ηS(λ,L) =
√

2 η(λ,L) and ΛS
ε(L)∩T = Λε/√2(L)∩

T.
Proof. Let λ ∈ T. Then by Theorem 3.4, we have ηS(λ, x,L) =

√
2 ‖L(λ)x‖2
‖(1,λ)‖2

for all
x such that ‖x‖2 = 1. Hence, taking minimum over ‖x‖2 = 1, we obtain the desired
results.
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Theorem 5.3. Let S ∈ {H-Hermitian, H-skew-Hermitian} and L ∈ S. Let λ ∈
R. Then for the spectral and the Frobenius norms on Cn×n, we have ηS(λ,L) = η(λ,L)
and ΛS

ε(L) ∩ R = Λε(L) ∩ R. Also when λ = ±i, for the Frobenius norm, we have
ηS(λ,L) =

√
2 η(λ,L).

Proof. Note that L(λ) is either Hermitian or skew-Hermitian. Let (μ, u) be
an eigenpair of the matrix L(λ) such that |μ| = σmin(L(λ)) and uHu = 1. Then
L(λ)u = μu. Define ΔA := − μuuH

1+|λ|2 , ΔB := −λμuuH

1+|λ|2 , and consider the pencil
ΔL(z) = ΔA + zΔB. Then ΔL ∈ S and λ ∈ Λ(L + ΔL). Further, for the spectral
and the Frobenius norms, we have |||ΔL||| = σmin(L(λ))/‖(1, λ)‖2. Hence, the result
follows. Finally, when λ = ±i, the result follows from Theorem 3.6.

Theorem 5.4. Let S ∈ {H-even, H-odd} and L ∈ S. Let λ ∈ iR. Then for the
spectral and the Frobenius norms on Cn×n, we have ηS(λ,L) = η(λ,L) and ΛS

ε(L) ∩
iR = Λε(L) ∩ iR. Also when λ = ±1, for the Frobenius norm, we have ηS(λ,L) =√

2 η(λ,L).
Proof. Note for λ ∈ iR, the matrix L(λ) is again either Hermitian or skew-

Hermitian. Hence, the result follows from the proof of Theorem 5.3. When λ = ±1,
the result follows from Theorem 3.7.

We mention that the above results are easily extended to the case of general
structured pencils where the coefficients matrices are elements of Jordan and/or Lie
algebras.

Finally, for T -palindromic andH-palindromic pencils we have the following result.
Theorem 5.5. Let S be the space of T -palindromic pencils and L ∈ S. Let

λ ∈ iR. Then for the Frobenius norm on Cn×n, ηS(λ,L) =
√

2 η(λ,L) and ΛS
ε(L)∩iR =

Λε/√2(L) ∩ iR.
Proof. Let λ ∈ iR. Then by Theorem 3.5, we have ηS(λ, x,L) =

√
2 ‖L(λ)x‖2/

‖(1, λ)‖2 for all x such that ‖x‖2 = 1. Hence, taking minimum over ‖x‖2 = 1, we
obtain the desired results.

Theorem 5.6. Let S be the space of H-palindromic matrix pencils and L ∈ S. Let
λ ∈ T. Then for the spectral and the Frobenius norms on Cn×n, we have ηS(λ,L) =
η(λ,L) and ΛS

ε(L) ∩ T = Λε(L) ∩ T.
Proof. Let L be given by L(λ) = A + λAH . For λ ∈ T, we have L(λ)H = λL(λ).

This shows that L(λ) is a normal matrix. Let (μ, u) be an eigenpair of λL(λ) such that
|μ| = σmin(λL(λ)) = σmin(L(λ)). Define ΔA := − 1

2λμuu
H and consider the pencil

ΔL(z) = ΔA+z(ΔA)H . Noting the fact that λL(λ)u = μu and μu = (λL(λ))Hu = μu,
we have L(λ)u + ΔL(λ)u = λμu − λμu = 0. Further, we have |||ΔL||| = |μ|/√2 =
σmin(L(λ))/‖(1, λ)‖2 = η(λ,L). Hence, the results follow.

For structured pencils, we have seen that ΛS
ε(L) ∩Ω = Λε(L) ∩ Ω for appropriate

Ω ⊂ C. We now show that this result plays an important role in solving certain
distance problems associated with structured pencils. For illustration, we consider
an H-even pencil L(z) = A + zB. Then by Theorem 5.4, we have Ω = iR, that is,
ΛS
ε(L)∩ iR = Λε(L)∩ iR. The spectrum of L has Hamiltonian eigensymmetry, that is,

the eigenvalues of L occur in λ,−λ pairs so that the eigenvalues are symmetric with
respect to the imaginary axis iR.

Question: Suppose that L is H-even and is of size 2n. Suppose also that L has
n eigenvalues in the open left half complex plane and n eigenvalues in the open right
half complex plane. What is the smallest value of |||ΔL||| such that ΔL is H-even and
L + ΔL has a purely imaginary eigenvalue?

Distance problems of this kind occur in many applications (see, for example, [8]).
Let d(L) denote the smallest value of |||ΔL||| such that L +ΔL has a purely imaginary
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eigenvalue. Then by Theorem 5.4, we have

d(L) = inf
t∈R

ηS(it,L) = min
{
ε : ΛS

ε(L) ∩ iR �= ∅}= min{ε : Λε(L)∩iR �= ∅}= inf
t∈R

η(it,L).

Hence, d(L) can be read off from the unstructured pseudospectra of L. Note that
η(z,L) = σmin(A + zB)/

√
1 + |z|2. Thus, if the infimum of η(z,L) is attained at

μ ∈ iR, then as in the proof of Theorem 5.4 we can construct an H-even pencil ΔL
such that μ is an eigenvalue of L + ΔL and that |||ΔL||| = η(μ,L) = d(L).

6. Conclusions. We have analyzed structured backward perturbations of ten
special classes of structured pencils. Given a structured pencil L ∈ S and an approx-
imate eigenpair (λ, x), we have determined the structured backward error ηS(λ, x,L)
and a structured pencil ΔL ∈ S such that |||ΔL||| = ηS(λ, x,L). We have shown that
such a ΔL is unique when Cn×n is equipped with the Frobenius norm. On the
other hand, we have shown that there are infinitely many such ΔL when Cn×n is
equipped with the spectral norm and that all such ΔL are characterized by adopting
Davis–Kahan–Weinberger solutions of norm-preserving dilation problem for struc-
tured matrices. More specifically, for the Frobenius norm on Cn×n, we have deter-
mined ηS(λ, x,L) and a unique ΔL for T -symmetric (Theorem 3.1), T -skew-symmetric
(Theorem 3.3), T -even and T -odd (Theorem 3.4), T -palindromic (Theorem 3.5), H-
Hermitian and H-skew-Hermitian (Theorem 3.6), H-even and H-odd (Theorem 3.7),
andH-palindromic (Theorem 3.8) pencils. On the other hand, when Cn×n is equipped
with the spectral norm, we have shown that ηS(λ, x,L) = η(λ, x,L) for T -symmetric
and T -skew-symmetric pencils (Theorem 4.2), and have determined ηS(λ, x,L) and a
ΔL for T -even and T -odd (Theorem 4.4), H-Hermitian and H-skew-Hermitian (The-
orem 4.5), H-even and H-odd (Theorem 4.6), T -palindromic (Theorem 4.8), and H-
palindromic (Theorem 4.9) pencils. We have shown that structured and unstructured
pseudospectra are the same for T -symmetric and T -skew-symmetric pencils. For the
rest of the structures, we have shown that ΛS

ε(L) ∩ Ω = Λε(L) ∩ Ω for some Ω ⊂ C.
We have also shown that the equality ΛS

ε(L)∩Ω = Λε(L)∩Ω plays an important role
in constructing solution of certain distance problems.
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